For Those Who Interface, Build, and Apply Micros

tes iz Mymher 12 $2.50 L5

Tricks of the Trade:
Installing New 1/O Drivers in a BIOS s

- Interfacing Tips and Troubles:
Noise Problems, Part three pes

Beginner’s Project:

555 Timer Breadboard -«
LSTTL Reference Chart v

- Multi-user:
Cables and Topology rue

Write Your Own Threaded Language:

Part Four: Conclusion cuen

Tre Computer our~a 1

Editor’s Page

Choosing A Programming Language

One way to start a lively discussion in a group of
computerists is to praise or criticize a popular
programming language. Few people can discuss
languages without becoming irrational and excited. It
is unfortunate that there is not one language which is
best for every possible application so that the choice
would be simple, but the fact is that you will need
different languages for different purposes—unless
you are willing to limit yourself by trying to force the
one language you are familiar with to do things for
which it is not suitable.

High level languages (which we'll call HLL) are
very popular with many people at the present time,
but there are some who offer a good case against
certain applications of HLLs. One of the most
interesting proponents of using the right language for
the right application is the editor of DTACK
Grounded,* a publication which should be on your
“must read” list if you are at all interested in what's
going on with systems and HLLs in the marketplace.

Perhaps we should take a moment to describe what
low level and high level languages are. An example of
the lowest level language which we would normally
encounter is assembly language, where we enter
mnemonics which an assembler converts to
hexadecimal code. Examples of HLL would be Pascal
or C. In addition to the general purpose languages,
there are also many special purpose languages such
as LISP, Logo, FORTH, etc. which were developed
for specific applications. I'm sure that I'll get in
trouble with that statement because some people
insist that one of these specialized languages is really
the best language to use for everything.

The only way to decide which language to use is to
become familiar with several and study how each one
handles certain operations. For an example of a low
level language (LLL) application, the source code for
my CP/M BIOS is supplied as an assembly language
text file which I can modify using a word processor,
and then re-assemble. Assembly language seems the
natural choice for modifying a program when the
source code is supplied in assembler code, and I don't
believe that it is practical to do it with any other
language. On the other hand, if someone asked for a

*DTACK Grownded 1415 E. McFadden Suite F, Santa Ana CA 92705. $15/10 wsues

chart showing the circumference and areas of circles
with diameters from one to a hundred, I'd use a short
BASIC program to print out the chart. Any HLL
would be better than assembly language for this
simple one time job, but I'd use BASIC because I'm
familiar with it and I can run the program without
saving anything to disk, or compiling, or linking to a
library. BASIC is great for a short, simple, seldom
used program.

The choice is not alway as simple as in the previous
two examples, and you'll have to consider
programming time, run time, frequency of program
use, code size, special requirements such as string
handling, transportability between systems, utilities
available, and much more before making your
decision. The natural reaction is to use whatever
language you are familiar with, but one of the first
considerations should be whether the program will be
for your own use or if it will be distributed to others.
You can use anything you have for use on your own
system, but you have to consider other users’
systems if the program will be distributed. Again, I'll
use two examples: if you are writing a Z-80 assembly
language debugging program you can write it in Z-80
code because everyone will be using it on a Z-80
system. On the other hand, if you are writing a

continued on page 11

Editor/Publisher. Art Carlson
Art Director................... Joan Thompson
Technical Editor. Lance Rose
Production Assistant........... Judie Overbeek
Contributing Editor............. Ernte Brooner

The Computer Journal® is published 12 times
a year. Annual subscription i8 $24 in the U.S.
$30 in Canada and $48 airmail in other
countries.

Entire contents copyright © 1984 by The
Computer Journal

Postmaster: Send address changes to: The
Computer Journal, P.O. Box 1697, Kalispell MT
59908-1697.

Address all editorial advertising and
subscription inquires to: The Computer Journal
P.O. Box 1697, Kalispell, MT 59903-1697.

Tne Computer Jourm

TRICK

OF THE TRADE:

Installing New 1/O Drivers in a BIOS

by Bill Kibler

There are many shortcuts that I use when making
modifications to equipment; I call them “tricks of the trade.”
These tricks help by-pass the normally long and tedious
procedures for making things work. This article is the first
in a series on “tricks of the trade,” in which I hope to cover
some of the quick and simple solutions to common system
integration problems.

The Beginning

The most common problem, and the one we will start
with, is that of installing new I/O drivers in a BIOS.
Typically, the user is provided with a running system, but
no printer device. Many of the newer systems now have
install programs that set up the ports for you. As a system
integrator, however, the task is your own—especially when
the system is not standard. What you will need is a clear
understanding of your system.

In a standard CP/M system there are already entry points
in the BIOS for the extra routines. Printing out the listing of
your current BIOS.ASM files will show how the current
devices are handled. For some lucky persons, the routines
for the manufacturer's standard installation may be present.
For those, the task will be to change the routines to reflect
the new devices. However, many will find a call to the
terminal routine for the printer entry point. This echoes the
output to your terminal until you do the modifications. Some
manufacturers provide detailed instructions on how to
change these conditions. For those who do not have that
information, I will try and cover all that was omitted.

System Calls

There are two topics that must be understood before you
can install a new I/0 routine: first, the way the Disk
Operating System (DOS) calls the routine, and secondly. the
actual device's data handling procedures. For DOS calls, the
manuals will have a detailed discussion explaining which
registers of the CPU should contain what. The system is
composed of a central processing unit (CPU), which is made
up of temporary storage segments (registers} that can pass
data between themselves, locations in memory, or
input/output (I/0) locations. In CP/M this CPU is a Z80 or
8080 device which also has a separate set of locations for 1/0.
The Apple DOS is based on the 6502 CPU, which uses
memory locations for I/O. In either case, they have their
own way of talking to dedicated hardware with their
registers.

Another way of saying this is that the information
presented on your terminal screen is first loaded into a
register of the CPU and then transferred to the I/O device
at some location in the machine. Unfortunately, the device

may or may not be ready for this information. The DOS also
has to know which location or alternate location is being
used. Programmers hate writing programs for each special
case of output devices, so some standards have been set by
the DOS makers to give stability to the problem. These
standards are the BDOS and BIOS organization and
conventions. The BDOS has an established entry point to
the system which checks a set register of the CPU (8080's
“C") to find out which procedure is to be performed. This
also tells the system which other registers have information,
or will recieve information. The BDOS (Basic Disk Operating
System) will then take this information and call the proper
BIOS (Basic Input and Output System) entry point or points
to get the desired results.

To understand what your routine is doing, search the
manua! for a listing of BIOS or BDOS routines and you will
find the values and registers used. For a printer, the routine
is called “list” or “listing device,” and is the sixth entry
point of the BIOS. The BDOS system call will have a five in
the “C" register of the function call. In the BDOS function
call the “E” register has the character to print, which gets
moved to the “"C" register when calling the BIOS. That
means the user/programmer puts the single character to be
printed in the “E" register, puts a five in the “C" register,
and then calls address “0005H,” the entry point of the
BDOS. The systems programmer \vill know that the same
character will be in the “C” when the sixth entry to the
BIOS is called by the BDOS, and the BIOS will then output
it to the printer. Before outputting the character, the BIOS
will test to see whether or not the printer is ready. if the
printer is not turned on, or even not attached, most CP/M
systems will wait forever for the printer to become “ready™
this is the hated “locked up system,” and will require a
master reset. You may be asking “why not output directly
to the BIOS and skip the BDOS call?” This is just what a lot
of IBM PC programmers have done to make the machine
fast enough to use, but it also makes the system
incompatible. As newer versions of the DOS are made, the
entry points of the BIOS may change. So far, the entry
points of the BDOS and the values in the “C" register have
remained the same, which is why programs for CP/M 2.2
still work on CP/M 3.0 if done with proper calls to the
BDOS.

/O Routines
Leaving the user and BDOS programming information for
another time, let's start from the BIOS entry point. The
BDOS wiill make a standard CALL into the BIOS. This
means that a return address was pushed onto the stack. so
that when a RETURN instruction is encountered at the end

of the routine, the CPU will return to the address it takes
off the stack. The stack, which may be short, will be set up
in BDOS and BIOS. It will be almost fully used when
entering the BIOS, so care is needed here that the stack is
protected or not filled up with data. For simple routines like
printer output this is seldom a problem, but for multiple
nested calls in disk routines it can cause grief. You should
also remember that the stack is just a place in memory, and
as such can also be written into by mistake, so find out where
it is and keep it in mind when programming. For complex
routines the STACK will be protected by saving the entry
stack address and putting your own in place of it; the
reverse will happen when leaving the routine.

Normally, the procedure for the printer or list routine is
to see if the printer is ready, and then output the data. A
separate routine is available in the BIOS for checking list
status—this is the 16th entry point, and it will return the
status in the “A" register. With this in mind, our routine’s
first statment will be a call to the list status routine. The
next step is checking the "A" register to see whether or not
the status is ready. If not ready. recall the status check. If
ready, continue on. Next, we will need to know if this is a
serial or a parallel printer, as each has their own routine
(and status check). For serial operation just load the “A”"
register with data from the “C" register and output it. For
centronics style parallel printers the data will be loaded and

Tre limootes Loume 3

then the printer will be strobed. Strobing signals the printer
that a character has been loaded and is now ready for
printing. After either routine a RETURN instruction is
executed, returning the program to the BDOS and then to
the user program.

Hardware

When you start looking at hardware information it is
often helpful to draw a block diagram. Once the concept of
the routine is understood, the specifics of the bits and
addresses are next. This translates to finding the IO
device's manuals and seeing how the designers of the
product intended the data I/O to be handled. For most
systems this is straightforward. GODBOUT systems have
another, interesting way of doing it. The standard way is to
check the port addresses assigned for data injout and
status/command. These ports are usually tied directly to the
actual device and will reflect the original chip maker’s
design parameters. In some cases it will be necessary to
check the chip manufacturer's specification sheet to find out
how to set up the device. In the case of GODBOUT you will
first need to send a device activation number to the
command port, as the system uses seven ports for several
devices. This saves on I/O ports and can add some creative
programming techniques that could speed up the I/0.
However for most novice programmers this will simply add

BIOS Hardware

User Program BDOS
20 PRINT “2Z”
| Check “C" for Type
of Operation to be
Performed
Load “E" with 5A hex (£} | ‘
Load “C" with 05 hex
4 .
Move “E" to
Call BDOS @ 0005 hex “C" Register

l ¥
Call BIOS

List Entry point —
Possible Device Checks

v
Check List < Hardware
Device Status —» Interface

1
oK

'

K

not ready

Move “C" Data
to “A” Register

v

Output “A” Data
to Hardware

get retur” a00ress

a Return to

{ Push Return Address List Routine | Printer
| onto Stack v — ¢
If Paraliel
i Push Return Address Do Strobe
Stack on Stack
4
v

[Ll IMed aocress
Stack

Completed Operation
Do Return

Original Caller

—
. Renter Program and go]
to Next Step <

v

30...

4 Tre Computer 2ourra

another level of possible error and confusion. When dealing
with this type of problem, remember to add this step to
your flowchart, and be sure you understand its operation
before you start programming.

The Z80 SIO is a typical serial device. It is the companion
to the Z80 CPU, but was designed for serial I/O. This device
is a form of CPU in which the I/O and registers have been
arranged to provide the desired type of operation. For the
SI0 it is two serial ports, and for the Z80 PIO it is two
parallel ports. The devices have two modes of operation—a
data mode and a command mode. As with a CPU, you load
instructions into a register and then the CPU performs
some task. These special devices work the same way except
that you will most likely store the commands in the
appropriate register only after resetting the system. This is
called initialization of the device and is based on the original
designer’s specifications. These values stored at reset will
have a single bit assigned for each function, “on” for
function activation, and “off" if that function is not to be
used. An example of this is the number of data bits used;
this can be 5 to 8 bits and a value will be 0 to 3 to represent
the data bit options.

A typical system will assign an I/O location for each of the
functions of the device. This means that an address will be
used for the command register, another for the "A"” data 1/0,
and one for the “B” data I/0O. Communicating with these I/0
addresses will allow different functions to be performed,
depending on whether the operation is a READ or a
WRITE. For a more in depth study of how the serial device
is programmed, you will need to buy the programmer's
manual for the device. If you are like me, you deal with far
too many devices to buy all that information. I usually just
try to see what was done elsewhere in the system. The
BIOS will most likely initialize the devices for some form of
operation. Modifying that section of the BIOS for your
application may be easier than starting from scratch. For
simple tasks, just knowing what each value of the registers
stands for will be enough once you have read one
programmer’s manual. Most of these devices all work the
same-—they just use different assignments for the
commands.

The procedure then is to check that the device's registers
are set up correctly at initialization time, and then to
determine from the specs what status values are returned
from the command mode in a READ operation. This will tell
if the device is ready or not. In the serial mode, it tells if the
data registers are empty or full. For the transmit direction
we want the register to be empty, and for the recieve
direction it has to be full of data. To find out whether the
registers are empty or full, you read the status port, mask
off the unwanted data bits, and check this remaining value
with the desired value. This can be either a high or low (a
“1" or a "0") and, depending on the processor, can be
handled in different ways. An 8080 cannot do bit tests like
the Z80, so if you are doing programs for unknown machines
do not use a bit test. The assembler that comes with CP/M
is setup for 8080 code and as such is usually the one used for
assembling most BIOSs. This may not be the most efficient

way, but it keeps you from buying a new assembler to
handle Z80 code.

My favorite time saving trick is to use DDT to check my
routine for proper masking and options. I either look at
other code and see how they did it, or make a stab at what I
think it should be. This usually means doing an "ANI" with
some mask value and then doing a “JNZ" to recheck the
status. If you have been unable to determine the right
status information for your device you can also use DDT to
try and find out what happens when. The manuals will tell
you most of what you need to know about DDT, so I'll only
cover it briefly.

DDT, ASM, and MAC

DDT is the CP/M debugger. It will allow you to check the
operation of a program or find out where it is going astray.
Normally this is done only after a program has been written
and is not working. I use mine for checking out my ideas of
what code should be like. In our current example, that
means using the assembler portion to write the printer
output routine, complete with status checks. Then use the
examine mode to set the desired registers with the correct
values. The trace function will allow you to display all the
registers and the program steps. This display will show
exactly what data is going where, and whether or not you
are masking correctly. There are several other functions
that may help programmers, but a more complex debugger
is necessary, such as SID or ZSID, which for about a
hundred dollars will add some useful features. The best way
to understand these is to get the manual and experiment
until you fully understand the new commands.

Should you have a program where the code exists for
another device, using the DDT functions to subsitute new
I/0 addresses can sometimes save reassembling a whole new
BIOS. In the case of setting new speeds for a serial port, or
reassigning an 1/O function for a parallel port, DDT will do it
much easier than anything else. Good manuals will list just
such procedures for some of their standard modifications, so
look at their sample for a “how to" approach.

When assembling 8 new BIOS many problems may crop
up. One of these is the Z80 code, where the orginal BIOS is
in MACROS and will require MAC to assemble it. The BIOS
in Teletek systems is written using macros and must have a
new version of Microsoft's M80 to be assembled. In cases of
minor code changes, use of DDT is the only way out. Write
to Teletek to get a copy of the customization notes that I
wrote for some of their standard changes. Not all
manufacturers will have such support, so using a
wordprocessor to recombine all the files is one way of
getting macros assembled. For real insanity, DRI (makers of
CP/M) uses macros for their CP/M 3.0, in both 8080 and 280
code. You will find that most of the simple statements are in
8080 and only the faster block moves are listed in Z80. Now
this is not as bad as you might think — for those using a Z80
CPU the macro definitions allow the use of Z80 routines and
their increased speed. If you have an 8080 however, you can
rewrite the macro definitions to reflect the 8080 procedure
for the same function. I find, however, that it is better to

change an "LDIR" definition to a “CALL NLDIR", a new
routine which can be called at any time. Otherwise the
assembler will add 10 or 15 lines of code each time you put
in an “LDIR" instruction.

Do not let macros scare you away from making changes in
a BIOS—they are much like subroutines in a BASIC
program. What you will need however, is to make a lot of
flow charts and cross reference charts. Without this written
information you will become lost quickly as you move from
one macro to another. There are really two type of macros;
those that are definitions and get put in library modules,
and those that are complete functions (like a disk handling
routine). The library listing for DRI's Z80 macros is mostly
define byte or word (*DB") statements, which is what Ido
sometimes for a simple Z80 code insertion while using DRI's
ASM. What this means is that you insert the actual hex
codes in the program for the Z80 machine code. This is fine
until you use DDT, which will not know what the code
means (you will need ZSID for Z80 code). This procedure
also takes time, as you will have to look up each instruction
and get the hex values needed.

The second type of macros consist of complete routines in
which the input and output data come from other programs.
This shared data is listed at the beginning of the macros,
and tells the macro assembler what data to include from
other files. When assembling these files, they will be done
one &t a time and then linked together in some order.
Linking passes the addresses between macros for those
open variables and sets the order of routines within the
main program. Library routines are used during the
assembler time when a statement is listed whose definition
is in the library (the libraries used are declared at the
begining of the macro.)

Putting It Together

Lets start tying this up by getting to the “checking-it-out”
phase. This is where I take the newly changed code (either
DDTed or reassembled) and make it run. Hopefully the
manual will give you the procedure to be followed for
reassembling code. For ASM programs this is rather
straightforward; assemble the program, use DDT to attach
it to the old system file, and reload it on the system tracks.
If you DDTed it, you need only put it on the system tracks
and try it. For those who are completely confused about
these steps, lets review the system's makeup. You are
supplied with a complete system in several ways. The main
boot disk has the system tracks already loaded with a
system. To get at it, you use “"SYSGEN.COM” with a
“SAVE xx.” This will save the necessary file for later
DDTing, and you will need to check the manual for size of
file. For non-CP/M systems, check the manual—it will list
some procedure or program to get the system's track
information. Newer systems, and those with more

information than can fit on the system tracks, will put a
simple loader on those tracks, and load a file called
“CPM3.SYS" (mainly the .SYS). These system files are
handled much like any other COM file or program file. In
CP/M 3.0 there is a separate program for generating a new

Tre lomouter Lou a2 §

system, called "GENCPM.” This takes the linked output
files and generates a new “SYS" file.

MOVCPM is a program that has a relocatable source of
the system, and is what is used when genera''ng a new
memory size system. I generally do not modify tais program
but use the results for my specific memory size. In other
words, generate a new system file, save it as indicated by
the MOVCPM program, add the new BIOS with DDT, and
SAVE again but with a new name and maybe even a new
file size. One thing to remember about MOVCPM is that it
checks for serial numbers. These numbers are easy to find
and change (only two locations in CP/M 2.2), and as long as
you don't intermix systems you will not see a
“SYNCRONIZATION ERROR" and have to reboot.

The next step is putting this all together into a running
system. so let's look at a typical installation of a new BIOS
on a 64K system using normal size programs.

1) Get the system: MOVCPM 64 * (generate a 64K system
and get it ready for a save)
ready for "SYSGEN" or
“SAVE 36 CPM64.COM”
2) Save system: A> SAVE 36 CPM64.COM
3) Make new BIOS: A> ASM BIOS (use .AAZ if no prn file)
4) Correct any possible errors that the assembler may have
found, check PRN file for possible memory conflicts.
5) DDT in new BIOS: A> DDT CPM64.COM
2400 0100 C3FF
D1F00 (make sure of BIOS begining) (look for string
of jumps"C3")
FIF80 4000 00 {(clear out old BIOS)
HIF80 F200 {do hex addition)
1180 2D80 (get OFFSET)
IBIOS.HEX
R2D80 (loads BIOS at proper OFFSET)
D1F00 (check to see if loaded and get end of file
location)
GO (back to system)
6) Save new system: A> SAVE 36 CPM64X.COM
7} Put on system tracks: A> SYSGEN
SOURCE NAME OR SKIP (skip as source is still in
memory)
DESTINATION DISK b (put files on spare disk in B
drive) ,
8) Test system by putting disk in A and rebooting.

Now that doesn't look too hard, but I am sure a lot of people
got lost at OFFSET. When you assemble the BIOS, it will be
for its final location in memory, in this case F200hex. Using
DDT you can find your current BIOS by looking at page 00
or 0000 hex to 0100 hex. At 0000hex there is a jump to the
first entry of the BIOS, but remember that it is low address
first then high value (remember, the jump is 8 C3). The disk
read routine checks the addresses assigned to the program
and tries to load it there. If you just have DDT load the
program, it will go to the assigned address or F200. Because
we are replacing the BIOS in our old program we want it to
be in a location we can save it from, or in the 0100 hex

6 Tne Computer Lourma

region (which is where SYSGEN leaves it). To do this, we
must get an OFFSET value that DDT adds to the address
the disk controller supplies, and compute a new memory
location at which to load the file. We do this by using the
hex function of DDT and supplying the desired location and
the source location. The H function will give use of the hex
addition and subtraction values; use the subtraction value.
This value is added to the R command and should load the
program at the proper location.

Conclusion

If all went well, you should now have a new printer
function routine for your BIOS. If not, you may have missed
a few steps or had problems with your routine. I could give
you more listings and instructions, but to do so would
remove some of the challenge and learning steps needed to
become a good programmer. Remember some of the words
of wisdom I gave in previous issues, about trying it over and
over till it all works. Plan to have problems, and do not be
surprised when they occur—that is part of the challenge,
and adds to the thrill of success when it all goes well.]

COMPUTER"®

T TRADER
MAGAZINE

 « % LIMITED TIME OFFER « & »
BAKER’S DOZEN SPECIAL!
$12.00 for 13 Issues

Regular Subscription $15.00 Year

Foreign Subscription: $55.00 (air mail)
$35.00 (surface)

Articles on MOST Home Computers,
HAM Radio, hardware & software reviews,
programs, computer languages and construc-
tion, plus much more!!!

Classified Ads for Computer & Ham Radio Equipment

FREE CLASSIFIED ADS
for subscribers
Excellent Display and Classified Ad Rates
Full National Coverage

CHET LAMBERT, WAWDR
1704 Sam Drive ¢ Birmingham, AL 35235
(205) 854-0271
Sample Copy $2.50

L

IBM PC OWNERS
DON'T WASTE YOUR TIME. . .

Doty

mant your 0NQIng 0B S:gn
&0 Rea Time Devices PUIOG
4araware Developmen'
are

&

With the PD100. we've done most of the difficult work for you. The PD100 contains ~—

a buffered data bus. switchable address decoder. prototyping area ang easi'y
- available wire wrap posts Ali that needs 10 be done IS to make simpie connectiors
to the wire wrap posts and you have a unique design implemented in minutes
rather than days. Not familiar with intertacing? Our comprenensive, 116-page
manual “Interface Projects for the 1BM PC includes an introguction to mter-
facing and details implementing and programming A/D. D/A converte's 1/0
ports. connection of transducers and dozens of useful circuits
The board and manual are invaluable aids to engineers. hobbysts studer:
and anyone seriously interesied in expanding the power of the |1BM PC Tr
PD100 will make your prototyping a lot easier. . we guarantee it''

MANUAL TOPICS BOARD FEATURES

« Introduction to Interfacing * 1600-hole on board wire wrap

o Prototype Construction area accommodates up to 40
Techniques DIP sockets

» Simplest 1/0 Devices o Easily accessible buffered

« 1/0 Software Example data bus, control signals,
Commands power supply, wire wrap posts

« Real World interfacing * Four switch selectable .

oE ie Proiect addresses. no contention with

xample Frojects existing IBM PC peripherals
¢ Analog Interfacing and

Analog Signal Conditioning * Gold piated edge connector

* PD100 Schematic and
Specifications

ORDERING INFORMATION
PD100 WiTH MANUAL - $39 00 PLUS $3.50 P&H
MANUAL ONLY - $20 00 POSTPAID
PENNSYLVANIA RESIDENTS ADD 6% SALES TAX
MASTERCARD AND VISA ACCEPTED. SEND CHECK OR MONEY ORDER TO
REAL TIME DEVICES
1930 PARK FOREST AVENUE
P.0. BOX 906
STATE COLLEGE, PA 16801
PHONE (814) 234-8087
DEALER INQUIRES WELCOME

9 .
4 [] []
i Searching for Useful Informat
earching for Useful Information?
: The Computer Journal is for those who interface, build, and apply micros. No
other magazine gives you the fact filled, how-to, technical articles that you need to
- use micros for real world applications. Here is a list of recent articles.
Volume 1, Number 1: Volume 2, Number 3:
— ¢ The RS-232-C Serial Intertace. Part One » Heuristic Search in Hi-Q
¢ Telecomputing with the Apple][: Transferring Binary Files e Build a High-Resolution $-100 Graphics Board. Part Two
* Beginner's Column, Part One: Getting Started Theory of Operation
¢ Build an "Epram” e Multi-user: Etherseries
3 * System Integration, Part Two: Disk Controllers and CP'M
Volume 1, Number 2: 2.2 System Generation
* File Transfer Programs for CP/M
s The RS-232-C Serial Interface. Part Two Volume 2, Number 4:
7 * Build a Hardware Print Spooler, Part One: Background and ¢ Build a VIC-20 EPROM Programmer
Design ® Multi-user: CP/Net
* A Review of Floppy Disk Formats * Build a High-Resolution S-100 Graphics Board, Part Three
— * Sending Morse Code With an Appie] Construction

s Beginner's Column, Part Two: Basic Concepts and
Formulas in Electronics

Volume 1, Number 3:

* Add an 8087 Math Chip to Your Dua! Processor Board

¢ Build an A/D Converter for the Apple]|

¢ ASCll Reference Chart

¢ Modems for Micros

¢ The CP/M Operating System

¢ Build a Hardware Print Spooter, Part Two: Construction

Volume 1, Number 4:

¢ Optoelectronics, Part One: Detecting, Generating, and
Using Light in Electronics

¢ Multi-user: An Introduction

¢ Making the CP/M User Function More Usetuyl

¢ Build a Hardware Print Spooler, Part Three: Enhancements
¢ Beginner's Column, Part Three: Power Supgply Design

Volume 2, Number 1:

¢ Optoelectronics, Part Two: Practical Applications

e Multi-user: Multi-Processor Systems

¢ True RMS Measurements

* Gemini-10X: Modifications to Allow both Serial and Paralie!
Operation

Volume 2, Number 2:

* Build a High Resolution S-100 Graphics Board, Part One:
Video Displays

+ System integration, Part One: Selecting System
Components

* Optoelectronics, Part Three: Fiber Optics

¢ Controlting DC Motors

* Multi-User: Local Area Networks

* DC Motor Applications

e System Integration, Part Three: CP/M 3.0
¢ Linear Optimization with Micros
o LSTTL Reterence Chart

Volume 2, Number 5:

* Threaded Interpretive Language. Part One: Introduction and
Elementary Routines

* Intertacing Tips and Troubles: DC to DC Converters

¢ Multi-user: C-NET

¢ Reading PCDOS Diskettes with the Morrow Micro Decision
*{ STTL Reference Chart

*DOS Wars

*Build a Code Photoreader

Volume 2, Number 8:

*The FORTH Language; A Learner’'s Perspective

*Build an Affordable Graphics Tablet for the Appie ||
*Multi-user: Some Generic Components and Techniques
*Make a Simple TTL Logic Tester

sinterfacing Tips and Troubies: Noise Problems

*Write Your Own Threaded Language, Part Two: Input-Outpu-
Routines and Dictionary Management

*TTL Reference Chart

Volume 2, Number 7:

sPutting the CP/M IOBYTE To Work

*Write Your Own Threaded Language. Part Three: Secondary
words

eIntertacing Tips and Troubles: Noise Problems, Part Two
*Build a 68008 CPU Board for the S-100 Bus

sWriting and Evaluating Documentation

sElectronic Dial Indicator: A Reader Design Project

- Back issues: $3.25 in the U.S. and Canada, $5.50 in other countries (air mail postafe
included.) Send pagment with your comflete name and address to The Computer
6 . Allow 3 to 4 weeks for delivery.

Journal, PO Box 1697, Kalispell, MT 5990

8 Tre Corputer uouna3

Interfacing Tips and Troubles
A Column by Neil Bungard

Noise Problems, Part Three

This month in “Interfacing Tips and Troubles” we will
conclude our discussion on noise problems associated with
interfacing. In parts one and two of this series we looked at
power supply noise and noise associated with data
transmission lines. Part three addresses noise generation
from within the interface circuit, and noise induced from
outside sources.

Noise Generated Within The Interface

Last month we eliminated all possible noise associated
with the interface connecting cable. —But you say that
you're still having problems? The noise may be originating
inside the interface circuit itself. All the standard symptoms
like latches dropping bits, flip flops arbitrarily changing
states, counters spontaneously counting, buses locking up,
etc., are malfunctions which alert you to the fact that you
may have noise problems. In this section we will look at
techniques which are designed to eliminate noise within the
interface circuit itself.

Physical Separation

Once again, physical separation is the easiest noise
reduction technique to implement. When you are laying out
the interface project for placement of parts, keep as much
distance between oscillator, power switching, and logic
sections as possible. The more distance you have between
these sections the better your chances of eliminating
interference.

Decoupling Capacitors.

If you do not remember anything else from this series on
noise reduction, remember that the use of decoupling
capacitors is probably the single most effective noise
reduction technique that you can use. Figure 1 shows how a
decoupling capacitor should be connected to an IC.
Decoupling capacitors counteract the effects of self
inductance when an IC switches logic states. Self inductance
occurs because when an IC switches states it draws a
relatively high current for a few nanoseconds. These high
currents generate large magnetic fields propagating from
the power supply lines that feed the IC. The magnetic fields
in turn induce a counter current back into the very lines
that are generating them. The counter current opposes the
supply current and the net result is a current deficit at the
IC for a few nanoseconds. With no current applied to the IC,
the I1C attempts to turn off. If the IC is a latch, it looses its
data. If the IC is a flip flop, it changes states. If the IC is a

counter, it resets. Decoupling capacitors alleviate these
problems by acting as small storage batteries during times
of current deficits. For the few nanoseconds that current is
not being supplied to the IC, the capacitor dumps its charge
back into the IC's power supply inputs, thus ensuring that
the IC is always being supplied a current.

Decoupling capacitors are typically 0.01mfd ceramic disk
capacitors. When installing them on the IC, keep the leads
as short as possible to reduce the chance of self inductance
in the leads of the capacitor itself. The rules of thumb for
applying decoupling capacitors to your interface circuit are:

® Use one 10mfd capacitor where DC power enters the
interface board.

¢ Use one 0.01mfd capacitor on every latch, counter,
flip flop, oscillator IC, tristate IC, memory IC, and
multiplexer/demultiplexer IC.

¢ Use One 0.01mfd capacitor for every five “gate” ICs
(7400, 7404, 7432, etc).

Frankly you cannot use too many decoupling capacitors, so
use them liberally.

Decoup g capacta T 0°uF typica

AT
b -
; -
i -
V 1
= -
o =
-— ; —_
_ .
d - T - BVorom 4

GNCom i ”

Figure 1: Deccupting Capacitar - 1€ Connection

Inductive Spike Suppression

If you have inductive, high current devices on your
interface board (like relays, coils, solenoids, etc.), you will
need to take precautions against inductive voltage spikes.
These spikes will not only cause logic ecircuits to
malfunction, they will actually destroy ICs and transistors.
Guarding against inductive voltage spikes is a relatively
straightfoward task. Figure 2 shows three schemes for
reducing inductive voltage spikes. Figure 2a uses a silicon
diode to prevent flyback currents from destroying switching
circuits when they are turned off. Figure 2b uses a diode,
resistor, capacitor network to absorb flyback currents and

N

Trars'siom or T D over

——- — - .

——— .\'

Swicrhi-g o veay soenoic

() Sohid State Switching

I3 83y 0EnG e

sarteny

AT Suooy %

RILIANE

Cy reay soenag u

IN&OCE
{c; Swiching AC

Figure 2: Inductive Spike Suppression

prevent arcing across the switch when it opens. Arcing
sends a full spectrum of noise dancing through logic circuits,
which can produce unpredictable malfunctions. Figure 2¢
uses back-to-back diodes in a suppression network to guard
against flyback currents when switching inductive loads
with an AC supply. Always use the appropriate suppression
network when you use inductive devices. It will save you
headaches land maybe a few parts) in the long run.

Alternate Ground Paths

One relatively subtle source of noise which can cause
extreme problems (especially if you are using operational
amplifiers) is common impedance noise. Figure 3 shows a
typical circuit situation where common impedance noise can
cause problems. The switching circuit (a) can generate
current fluctuations in its ground return path as it switches
on and off. The ground return path has some impedance
associated with it, and small voltage fluctuations may result.
If an OP amp uses the same ground return path for its
reference terminal, noise will be generated in the OP amp
output. It is rarely obvious from the wiring diagram that
this problem is likely to occur. Keep common impedance in
mind when wiring the circuit, and try to wire reference
junctions as close to the power supply terminals on the
interface board as possible.

Noise Induced From Outside Sources
Now we come to “black magic noise.” I say that because
sometimes it seems as though this type of noise comes from
nowhere. Of course this is not true. Noise will always be

generated from a logical source, but the source can be hard
to locate. Two sources which I will discuss are magnetie
fields and electromagnetic interference (EMI).

If you are operating in a environment where permanent
magnets and/or electromagnets are present, keep the
computer and the interface as far from the magnetic fields
as possible. Sometimes however, devices which generate
magnetic fields must be mounted on the interface board
itself (in the form of a relay, solenoid, motor, etc.). In this
case, mount the device as far from circuit wiring as possible.
The problem is that if the magnetic field fluctuates or if a
wire is allowed to move in the magnetic field, a current will
be induced into the circuit. This current is an unwanted
signal, and can cause problems, especially if there are analog
devices on the board. Moving electromagnetic devices off
the interface board is the best technique for eliminating this
noise problem. If permanent magnets are being used in the
vicinity of the interface circuit, ensure that wires are not
vibrating or moving near the magnetic fields.

Electromagnetic interference (EMI! can originate from
radio transmitters, extremely high current switching
devices, motors, gas discharge devices, ete. This energy will
travel through air, it will ride on power lines, and it can be
received by anything that acts like an antenna. This type of
noise problem is usually found in an industrial environment
or possibly next to a radio or TV station, but it is a good
idea to be aware that EMI problems do exist, and know a
few techniques for combatting them.

EMI will most easily enter a circuit through long wires
that act as an antenna. Long power lines fall into this
category, as do lines to/from an interface which monitor or
control external devices. One simple and effective way to
combat EMI is to run the signal lines and/or the power lines
in a twisted pair. A twisted pair of wires in a varying
magnetic field will have induced voltages in successive
twists that oppose each other. The net interference effect in
the cable will be the sum of the individual induced voltages
which should be about zero. When using a twisted pair line
never ground both ends of the line. Figure 4 illustrates the
proper use of a twisted pair line. Grounding both ends of
twisted pair line can set up grounding loops which ma:
cause worse problems than the interference from the EMI.

Switching Circunt

ground
SR
. T groung

I v
ground .

.

| , 4 ~— Anternate groung patn

2 ; ’ 1¢ sminate noise
.

common L e
impegance ™ <
.
4 .
power suppiy bus

Figure 3: Common !mpedance

10 The Computer Journas

Another noise re-

grver | o duction technique
| % ™ 1 which is extremely
ground effective in reducing
EMI is shielding.

Shielding is a sub-
load ject addressed by
entire books, there-
fore, I will not
attempt to cover thv
subject in great
detail. Instead, I will
give an example of where shielding might help eliminate EMI,
and will give a list of do's and don'ts concerning shielding
techniques.

Low level analog signal measurement is one area where
shielding techniques are used regularly. For instance, you
may want to measure temperature at a location which is
several feet from the measurement interface. The detector
may output millivolt level signals which must be sent, via a
cable, to an operational amplifier on the interface board. To
eliminate the possibly of EMI interfering with the detector
signal, you can shield the signal line. Figure 5 illustrates this
measurement scheme. The following list of suggestions will
aid you in applying shielding techniques in situations like
the one shown in Figure 5:

® Do connect the shield to the reference potential
of the signal contained within the shield. This is
illustrated in Figure 6a. Note: Grounding the shield
is useless if the signal is not referenced to ground.

¢ Do connect the shield conductor of the shielded
cable directly to the reference potential at the
signal-reference node. This principle is also
illustrated in Figure 6a. Figure 6b illustrates a
shield not connected at the signal reference node.

e Don't run more than one signal line in each
shield. If more than one signal line must be sent to
the interface, a shield for each line is required.

¢ Don't connect both ends of the shield to ground.
Grounding both ends of a shield can generate
ground loop currents in the shield which may be
induced into the signal line.

e Don't allow a shield current to exist. This can be
insured by grounding the shield at only one point.

* Don't allow the shield to be at a voltage with
respect to the reference potential. Any potential on
the shield may be capacitively coupled to the signal
line.

(ncorrect

ground

Figure 4: Twisted Pair Grounding

Ve
~
1
ampither

% «— Distance in feet - ‘,-—-\\'V\r—)
o T T L
s | g h{\—& —1\ %

v ground L.__] To Computer

v
proune shieldec cabie
7
A/D Converter

Figurs 5: Remote Measurement Schems

I shieig

\/ /
signat
«— shieid conductor 0ac
.
i
signa: refersnce node .—\ grounc ‘

refecence potenta

(a) Proper Grounding

B N
J

- < Conguits”
cac

/
L\

-
signa LTJ

sme
signa’ A shieic not groundes
reterence noge — al sigra’ reference noce

—
groune
referenie Dote"T a

(b) Improper Grounding

Figure 6: Shieid Grounding

Noise Reduction Using Ferrite Beads.

In reviewing the schematics of several popular computers,
I noticed the use of ferrite beads on the power supply inputs
of several ICs, on the plus and minus 15 volt power supply
lines of several OP amps, on cables extending from the CPU
board to the keyboard, and on supply lines connecting front
panel LEDs. My curiosity was aroused concerning the use of
ferrite beads, so I did a little research and acquired some
interesting information that I will share with you. Ferrite
beads act as non-reactive energy absorbers. This is a rather
unique characteristic in that the other electrical elements
used for absorbing energy in a circuit are reactive. For
instance, inductors will absorb energy from a circuit.
However, the energy is actually stored as a magnetic field,
and you can bet that you will get a large percentage of the
stored energy back when the field collapses. The same is
true for capacitors. A capacitor will extract energy from a
circuit, but the energy is actually stored as an electric field
on the plates of the capacitor. A ferrite bead, on the other
hand, absorbs energy from a wire through inductive
coupling and does not return it to the line. This makes the
ferrite bead a perfect noise suppression element. These
beads can be purchased from Mouser Electronics (11433
Woodside Ave. Santee, California 92071), and they are
extremely easy to use. Just slide the bead over a wire
before connecting the wire to your circuit and the bead is in
place. If anyone knows a lot about the use of ferrite beads,
or knows of literature that address this subject, drop me a
line and I'll share the information with our readers.

A Noise Reduction Bedtime Story.
In the first part of this noise reduction series I promised
you a story which I thought that you might find amusing.

It's a short story, but it's a story with a moral. I was
employed by a research lab to build an amplifier to boost the
signals from an experimental solar cell. The job wasn't bad;
the signals were DC and I was using a monolithic
instrumentation amplifier to accomplish the task. To
simulate the sun's frequency spectrum we were using a huge
Zenon light source and focusing the light down on the solar
cell. I finished the amp and tested it by applying the same
DC voltage levels that the solar cell would produce.
Everything worked fine until I aligned the Zenon lamp and
switched it on. ZAP—my amp went up in smoke (at 25
dollars apiece)! At first I thought that I had overdriven the
amplifier inputs. So I decided to turn the light source away
from the solar cell, turn it on, and move it onto the cell
slowly as I watched the voltage level on the input of the
amp. I installed a new instrumentation amp, rotated the
light source and switched it on. ZAP—more smoke! Now
this is serious noise!! Needless to say, I was irritated. I
installed isolation transformers on everything, incorporated
grounding and shielding techniques, decoupled my amps,
and moved the light source to the other end of the room. All
of these precautions did not save me from yet another
smoking amplifier, but while staring at my third non-
operational amplifier the solution came to me. Turn the
amplifier circuit on after the Zenon lamp! Now I'm not
particularly proud of the sophistication of my solution, but it
works—and after all, that's the bottom line. The moral is:
sometimes avoiding noise is a better solution than
eliminating it.

Good luck solving (or avoiding) your noise problems. I
hope that this series on noise reduction will be an aid to you
in combatting noise problems. I have concluded this article
with a noise reduction checklist which may prove helpful if
you encounter noise problems in your interface.

Editor's Page, continued

business office program for wide distribution you had
better make sure that it runs on an IBM PC.

Checklist for
Reducing Noise Problems

The Power Supply:

0 Keep power supply lines short.

O Route supply lines around oscillator and power switching
circuits.

O Never “daisy chain” supply lines.

If noise persists:

U Be sure that you are using an adquate supply.

O Check supply for adequate filtering capacitors.

C Check for oscillating voltage regulators.

O Place ferrite beads on supply lines going to individual
circuit elements.

The Connecting Cables:

0O Limit cable length to one meter.

L] Physically separate transmission lines according to the
types of signals that they carry.

O Place a grounded line between each signa! line in the
cable or use a cable with a grounding plane incorporated.

O Terminate all cable lines.

5 Use 74L series ICs as cable line buffers.

The Interface Circuit:

O Separate oscillator, power switching, and logic sections
on the project board.

O Use decoupling capacitors liberally.

[J Use spike supression on EVERY inductive circuit
element.

U Always ground circuit sections to a single common point.

0 Keep wires and circuits away from magnetic fields.

Outside Sources:
O Always run two conductor lines in a twisted pair.
U I twisted pair lines do not eliminate noise, use shielding

techniques.
J Place a ferrite bead on lines going to remote circuit
elements. =

We have to think of our readers’ needs when
preparing articles, and the large number of systems
and languages in current use makes it difficult for the
editors at The Computer Journal to choose the
language which will be of interest to the largest
number of readers. We want to concentrate on
covering the areas of interfacing, measurement,
control, robotics, new devices, etc. without becoming
computer or language specific, and will try to use
assembly code where it is indicated (such as the
monitor for the 68008 board in the last issue), or one
of the more popular languages in other cases.

Unfortunately, the authors and the editors cannot
become proficient in all the languages so that we can
provide every program in several languages. In order
to alleviate this problem we encourage our readers to
share any routines which they have rewritten for

their own use. We would also be interested in
publishing comparisons of code size and run time
between different languages.

The Computer Journal's main emphasis is on using
computers rather than writing large involved
business oriented programs, but our readers are
interested in learning about assembly language,
utility program design, program debugging,
operating system design and modification,
programming for new CPU’'s such as the 68000,
control oriented languages such as FORTH, and how
to choose and use a language for a certain application.
We need more input from the people in the field
telling about their experiences with actual applications.
Send us a short article or outline on why you feel your
favorite language is the one they should use.]

FLOPPY DRIVE
_EXERCISER!

ALIGN DRIVE IN 10 MINUTES!
Use with scope and alignment disk (SS $49, DS §75)

— SINGLE KEYSTROKE FOR — SHOWS SPEED AND SPEED
ALL ALIGNMENT TRACKS AVERAGE!

— JOG KEYS-MOVE TO ANY — HYSTERESIS CHECK BUILT IN
TRACK — SELECT 5" 48, 96, 100 TPI, OR

— INCLUDES "OSBORNE" 8" 48, TPI
TYPE POWER HOOKUP — POWER "Y' CABLE-$10

— RUNS ANY STANDARD 34 DRIVE DATA CABLE=520

PIN (5") OR 50 PIN (8") DRIVE
USED BY: IBM, ARMY, NAVY, RCA, ETC..

EX 2000 $299

FREE Air Freight on Prepaid Orders. COD: Add $5 Plus Shipping

PROTO PC inc. CALL NOW! 15 644 4660
2439 Franklin, St. Paul, MN 55114

Beginner’s Project:

555 Timer Breadboard
by Art Carlson

Most measurement and control applications of
microcomputers involve some use of a timing signal, and the
565 timer chip is frequently used to generate these signals.
This simple breadboard circuit demonstrates how easy it is
to use this chip.

Prior to the development of the 555 integrated circuit
timer chip in the early 1970s, building even a simple timer
circuit involved working with dozens of discrete components
(transistors, capacitors, resistors, etc.) along with their
associated sockets, wires, and connections. This took a lot of
time and space. Now you can make a timer circuit with just
the one chip, a capacitor, and two resistors. The 555 can be
used in a wide variety of ways, including monostable or
astable multivibrators operating over a frequency range of
microseconds to hours. For this project we will use it as a
free-running astable multivibrator.

This is a simple breadboarding project for first time
builders. It is intended to provide some experience in
building prototype circuits and in using the 5565 timer, the
7T4L8S90 BCD counter, the 74LS47 BCD to seven segment
decoder/driver, and common anode LED display chips. The
circuit in Figure 1 was constructed on a Radio Shack
breadboard as shown in Figure 2. These breadboards are
ideal for experimental circuits because you can make

changes and salvage the components without any soldering
or damage to the parts. All of the material used in this
example was purchased from Radio Shack, except for the
wire and the potentiometer, which came from the junk box.
These are common, easy-to-get parts which can be obtained
from Jameco, Digi-key, and many other sources. I purchased
these from Radio Shack because we are in & remote area
and Radio Shack is the only local source where we can pick
them up without the delay and shipping expense involved in
mail order. A parts list is found in Table 1.

Circuit Description

The 555 is connected as a free-running astable
multivibrator. This means that it is not stable in either
state, and keeps changing back and forth, giving us a square
wave output. A monostable circuit would be stable in one
state, would switch when it received a trigger signal. and
would then return to the stable state until another trigger
was received. The frequency for the circuit we are using is
determined by the values of R1, R2, and C1, according to the
formula in Figure 3.

The values of R1, R2, and C1 in Figure 1 were chosen to
produce a one count per second display on the LED, and we
used a potentiometer to adjust the value of R2 to obtain the

+5V
4
s FE
R
5 12 S 13 a
R; % R 14 n 6 va b
3 N 6 | f
4 8 741547 ;Mr 9
2] - 10 Y 8
7 741590 VWV . ¢
555 9 :,3\' 7
Ry 2 9 1 R d
—3 5 2
21 6] 6 R
10
7 12 7 ¥ A n
1o 8
Ry = 1K ohm, Y watt

< T— 2.2uF
GND —

Re = 500K ohm
Ry—R.s = 330 ohm, Y watt

Figure 1: Schematic

Figure 2

correct frequency because the parts are not exactly the
nominal value. I have also included an LED on the output of
the 565 to monitor its operation. Note that an LED requires
a current limiting resistor because the LED is a diode which
would pass enough current to destroy itself when it
conducts. An incandescent lamp of the proper voltage could
be connected at this point without requiring a current
limiting resistor. :

The output from pin three of the 555 is connected to pin
14 of the 74LS90. This is the clock 1 input of a divide by two
counter. The output from this section on pin 12 is connected
to pin 1, which is the clock input for the divide by 5 section.
The standard 8-4-2-1 weighted BCD (Binary Coded Decimal)
output is available from the counter on pins 12, 9, 8, and 11,
with the least significant count on pin 12, the second bit on
pin 9, the third bit on pin 8, and the fourth bit on pin 11. See
the “BCD Math™ sidebar if you are not familiar with the
BCD method for encoding a decimal number from 0 through 9
in & four bit binary code. Note that the zero set pins 2 and 3
and the nine set pins 6 and 7 must be grounded.

The outputs from the T4LS90 are connected to the inputs
of the 74LS47 with the least significant bit to pin 7, the
second bit to pin 1, the third bit to pin 2, and the fourth bit
to pin 6. The 74LS47 converts the BCD input to the proper
outputs required by the LED seven segment display as
shown in Table 2. Note that since this display is an LED, a
series resistor is required on each segment, just as for the

Part Description Radio Shack # Price
Breadboard 276-174 $11.95
555 276-1723 $1.19
74.530 276-1808 $1 09
741547 276-180% $1.59
7 segment LED display 276-053 $1.79
LED 276-021 2/3 79
500K Potentiometer 271-221 $ 59
2 2uf Capacitor 272-997 $79
330 ohm. e wat! Resistor 271-1315 5/% 39
1K onm. YA watt Resistor 2711321 5/8 39

Total Price $20.10

Table 1: Parts List

Total Time (seconds) = 0.633 (R, + 2R;) €

Frequency = 1443
(Rw + ZRZ)C

Duty Cycle = _Ri+R
R, + 2R,

In this particular application we have made R. large with
respect to R, in order to obtain a square wave with a duty
cycle of almost 50% . althcugh the counter triggers on a short
pulse and it would work with a much lower duty cycle.

Figure 3: 555 Timer Design Formulas.

LED connected to the 555 output.

Construction

Building this circuit using the solderless breadboard is
simple. All you have to do is to cut and strip the wire and
plug the parts into the board. You should not have much
difficulty even if you have never built anything before!
Follow the next few steps if this is your first project,
otherwise skip this section.

Figure 2 will give you an idea of where to place the parts,
but you don’t have to follow the exact layout. I just started
with the 555 section and it grew from there. You may notice
that it does not look as neat as the illustrations you usually
see in magazines. That's because this is the way it turned
out when built as a test project, and I didn’t rebuild it for
the photo.

Start by inserting the 565 into the board. If you have
never used a chip, there is a notch or circle on the chip near
pin one, and the pins are numbered counterclockwise looking
at the top of the chip (as shown in the pinouts of these chips
in the Reference Chartl. Add the capacitor, the three resistors.
and the LED, then use short pieces of 24 gauge wire with 4~
of the insulation stripped from each end to make the con-
nections. It is helpful to make a photocopy of the circuit and
mark each connection with a colored pencil as it is completed.
Don't connect pin 3 to the 74LS90 yet. Connect a five volt
power supply with the polarity as shown, and the LED
should start flashing. If the LED does not flash, check all of
the connnections, especially the polarity of the LED (you do
have a visible light LED and not an infrared LED, don't
you?). If you can't find anything wrong, connect a 330 ohm
resistor in series with the LED and try it across the five
volt supply to be sure that you have the right polarity and
that the LED really does work.

After you have the 55656 section working you can
disconnect the power supply and complete the rest of the
circuit. This circuit is designed for a common anode display,
but common cathode displays are also available, so check
carefully if you have substituted a different part number.

Tre lovzlter sourna 18

BCD Math

Computers use binary numbers, but humans prefer to enter
information such as dates, time, or dollars and cents in the
decimal numbers which we normally use. BCD (Binary Coded
Decimal) is one method of encoding decimal numbers in binary
tashion. BCD is similar to hexadecimal except that only the
digits O through 9 are used for BCD instead of adding the
ietters A through F as in hexadecimal. BCD uses more memory
than hexadecimal because four bits in BCD can only represent
a maximum value of nine, while four bits in hexadecimal can
represent @ maximum value of 15. BCD is very useful when we
want to read or display decimal information, because four bits
always equals one decimal digit. BCD numbers can easily be
converted to decimal by treating groups of four digits as shown
in the following example:

442+ 1 =7

In BCD, the first digit has a value of 8, the second has a value
of 4, the third a value of 2, and the fourth, 1. Hence, the
decimal number 7 would be represented by the BCD
number 0111,

If binary representation of decimal numbers is new {0 you,
practice converting the decimal numbers 1 through 9 to BCD
and compare your results with the data in Table 2. J

Now for the real test! When you connect the power supply,
the seven segment display should count up to nine, then roll
over and repeat. If there is nothing on the display, check to
see if the LED on the 555 is flashing (it should be, because
you made sure that it was working earlier). Assuming that
the LED is flashing, go back over the circuit diagram and
check off the connections with a different colored pencil. If
the LED flashes, the display remains black, and you can't
find any errors on the breadboard, you get the chance to do
some troubleshooting. Sometimes I find it helpful to go do
something else for a while and recheck it again later.

In order to troubleshoot the circuit you will have to be
able to check various points to see if they are high or low.
We usually use a logic probe for this type of testing, but you
can use a voltmeter or simple LED indicator on this circuit.
You can make an indicator by connecting a 330 ohm resistor
to the cathode of an LED. Connect the other end of the
resistor to ground and touch the anode lead of the LED to a
connection to see if it is high or low. This indicator is not
equivalent to a regular logic probe which can detect high
speed pulses, but it will work for low speed or static circuits
such as this.

You know that the 555 is working because the LED on pin
3 is flashing, so you can start there to double check your
probe and follow the signal through the circuit to find the
trouble. The truth tables in Table 2 will help you determine
which pins should be high at any point in the count. After

BCD Equivalent Coding scheme for 7-segment display

|

a bcde t g
0 L L L L Lt LLLL L H
1 L LLH HLLHHHMH
2 L L HL L LHL L HL
3 L L HH L L LLHHL
4 L HL L HLLHHLL
5 LHL H L HLLHLL
8 LHHL LLHHHHMH
7 L HHH LLL HHHMH
8 HL L L L L L L L L L
9 HLLH L L LHHL L
Q
f b
g
e [4
d
These truth tables will help you understand the relationships
between the signals from the 74LS90 counter. and the 74LS47
seven segment decoder. The 555 produces puises. which are
received by the 74LS90 counter. It outputs the BCD number to the
740547, which decodes the signals to drive the LED display
With the counter at zero. the four BCD outputs from the
counter are all low, and the decoder sets LED segments a through f

low and g high to display a zero. When the counter recieves the
first pulse it outputs the binary number 0001 and the decoder sets
b and ¢ low to display the number one.

Table 2

the circuit is working you can adjust R2 so that the count is
approximately one per second.

Going Further

This simple project was intended to encourage you to start
building hardware projects, and to familiarize you with some
basic chips. The zero to nine second counter isn't very
useful, but we will use it as a building block for more
involved projects. In the next step we will add more digits
to the output so that we can count to larger numbers, and
use an AND gate between the 555 and the 74LS90 so that
we can count the number of pulses from another circuit
which occur in one second. Why don't you work ahead and
try to develop this on your own before we publish the next
article? []
For Further Reading: The 555 Timer Applications Sourcebook, With
Experiments, by Howard M. Berlin. Pub. by Howard W. Sams, 1982.

LEARN MICROCOMPUTER INTERFACING

VISUALIZE SCIENCE PRINCIPLES

Using GROUP TECHNOLOGY BREADBOARDS with your
APPLE® ..COMMODORE 64% ..TRS-80° ... TIMEX-SINCLAIR® ...VIC-20®

Versatile breadboards and clearly written texts with detailed experiments provide basic instruction in interfacing mi-
crocomputers to external devices for control and information exchange. They can be used to provide vivid iliustrations of
science principles or to design interface circuits for specific applications. Fully buffered address. data. and control buses
assure safe access to decoded addresses. Signals brought out to the breadboards let you see how microcomputer signals
flow and how they can be used under BASIC program controt! to accomplish many useful tasks.

Texts for these breadboards have been written by experienced scientists and instructors well-versed in conveying
ideas clearly and simply. They proceed step-by-step from initial concepts to advanced constructions and are equally
usefut for classroom or indwvidual instruction. No previous knowledge of electronics is assumed. but the ability to program
in BASIC is important.

The breadboards are available as kits or assembled. Experiment component packages include most of the parts
needed to do the experiments in the books. Connecting cables and other accessory and design aids available make for
additional convenience in applying the boards for classroom and circuit design objectives. Breadboard prices range from
$34.95 to $350.00

The INNCVATOR® BG-Boards designed by the pro- The FD-ZX1 IO board provides access to the Timex-

ducers of the high!y acclaimed Blacksburg Series of books
have gained wide acceptance for teaching microcomputer
interfacing as well as for industrial and persona! applica-
tions. Detailed. step-by-step instructions guide the user
from the construction of device address decoders and
input/output ports to the generation of voltage anc current
signals for controlling servo motors and driving high-
current, high-voltage loads. BG-Boards are available for the

Sinclair microcomputer for use in automated measure:
ment. data acquisition, and instrument control applica-
ttons. A number of science experiments have been
deveioped to aid teachers in illustrating scientific
principles. The operating manua!l contains instructions for
constructing input and output ports. A complete text of the
experiments will be available later in 1984. The FD-ZX1 can
be used with Modeis 1000, 1500, 2068. ZX81. and Spectrum.

Apple It It +, lle; Commodore 64 and VIC-20: TRS-80 Model
1 with Level il BASIC and at least 4K read/write memory.
Models I and 4. The books, Apple Interfacing (No. 21862)
and TRS-80 Interfacing Books 1 and 2 (21633. 21739) are
availabie separately.

The Color Computer Expansion Connector Breadboard (not shown) for the TRS-80 Color Computer makes it possible
to .connect external devices to the expansion connector signals of the computer. Combined with a solderless bread-
board and the book TRS-80 Color Computer interfacing, With Experiments (No. 21893), it forms our Model CoCo-100 In-
terface Breadboard providing basic interfacing instructions for this versatile computer. Experiments in the book show
how to construct and use a peripheral interface adapter interface, how to input and output data: and how digital-to-analog
and analog-to-digital conversion is performed.

Our new Spring Catalog describes the interface breadboards, dozens of books on microcomputer interfacing, pro-
gramming. and related topics including the famous Blacksburg Continuing Education Series, a resource handbook for
microcomputers in education, and a comprehensive guide to educational software; utility software for the TRS-80,
scientific software for the Apple Ii, and other topics. We give special discounts to educational institutions and instructors.
Write for the catalog today.

Apple . 1+, and lle are registered

trademarks ot Apple Computer Inc.. Group TeChnO'ogy’ Ltd.
Commodore 64 and VIC-20 are PUTTING P.o. Box 87N

registered trademarks of Commodoare

Business Machines; TRS-80 s a HANDS CheCk, VA 24072

registered trademark of Radio Shack.

a Tandy Corporation. Timex‘Sinciair AND 703'651 '31 53

IS a registered trademark of Timex M’NDS

Computer Corporation

TOGETHER

“re Tovziter _ama 17

- LSTTL Reference Chart

74L873 . 741578
Dual JK Negative Edge Triggered Flip-Flop Dua! JK Negative Edge Triggered Flip-Flop

AL} k13 2 28 LS -]] GND
_ . | ! = . l s T4 | 13 12 m
- i
B : i !
|
i !

(ol

74LS74 74L8107
— Dual D Positive Edge Triggered Flip-Flop Dua! JK Negative Edge Triggered Flip-Flop

— iy rx idd 0 - O?'c(cie 133
| i { : ; ' ‘ 14 13 12
- i — L —L R L0 1 I
1 1

. 74LS76 74L5109
— Dual JK Negative Edge Triggered Flip-Flop Dual JK Positive Edge Triggered Flip-Flop

Y 2

L i -/ :

18 Tre Computer journal

74L8112
Dual JK Negative Edge Triggered Flip-Flop

555 Timer

o' €0
‘. JSTHARGE wgfSHOD /0L AGE
T] -
L A R 5
i H L

|

74L8113
Dual JK Negative Edge Triggered Flip-Flop

741547

BCD to 7-segment Decoder/Driver

Juteuls

[Ol o

74L8114
Dual JK Negative Edge Triggered Flip-Flop

741890
Divide by 2 or 5. BCD Counter

Tre Computer Jourra 19

Multi-user

A Column by E.G. Brooner

In previous editions of this column we have discussed a
variety of multi-user concepts such as time sharing,
networking, and multi-processors. A few particular systems
have been described to illustrate the various ways in which
. several users can be tied together, either for communication
or for resource sharing.

One aspect which has been relatively untouched in this
column is that of the physical connection between the
devices. We have just assumed that some sort of wiring
exists and that it is adequate for the purpose. There is a
little more to it than that.

There are many ways to wire a conglomeration of
computer equipment. One of the terms that must be
understood is topology, which describes the physical layout
of the wiring. The topology depends a lot on the kind of
multi-user installation that is involved, as well as what kind
of devices and interfaces are to be used.

In spite of the different names that are used, network and
other multi-user topology falls into three general categories.
These are bus, star, and ring. A bus arrangement connects
everything essentially in paralllel and might be compared, in
some ways, to electrical wiring or a group of phone
extensions. Bus topology is the easiest to understand and
implement. With this kind of arrangement the failure of one
device does not usually disrupt the remaining operation.

Star connections involve separate cabling between some
central device (such as the computer in a fime sharing
system) and each user device. The distinction of a star
system is that each individual cable only serves one user,
and all of them terminate at a common point which exercises
some control over them. The failure of the central device
can put the entire system out of service.

Ring configurations describe a circle with user points
- spaced along the periphery. Some rings are just a bus tied
end-to-end, while others place the devices in series so that
the complete circuit can be interrupted at any device. Rings
can be thought of as a hybrid between buses and stars, with
some of the advantages and disadvantages of both.

There are special uses and reasons for each of the many
forms of topology. The configuration for any given network
is predetermined by the system design and manufacturer,
and is thus a limit that cannot easily be changed.

There are also a multitude of cables that might be used
for the various purposes. We are all familiar with most of
them in some form; there are ribbon cables such as those
that connect our disk drives and are sometimes used with
parallel printers; coaxial cables, twisted pair cables, and last
but not least, those used with RS-232 devices. RS-232 is
actually a 21 wire interface, but we sometimes implement it
(or part of it} with as few as three wires. Since there are not
many three wire cables around, we usually end up using two

pair telephone cable or a ten conductor cable.

Ribbon cables are used mainly with parallel devices which
require a large number of connections. We don't generally
run them very far for some obvious reasons —loss and noise
pickup are two of them. Cables with fewer wires in them are
more reasonably priced, less cumbersome, and can usually
be run farther without problems; in the case of RS-232 the
specs say 50 feet but a couple hundred may be practical. The
RS-449 convention used for very similar purposes has an
even longer range. RS-449 permits a trade-off between
speed and distance: high speed over short distances, and
slower performance for up to several hundred or thousand
feet.

Coaxial cables can be installed to cover thousands of
yards, but there usually has to be some kind of interface to
get the signals on and off the cable, and some cost is always
involved. The coax itself may also be more expensive than
some simpler kind of wiring. Fiber optics provide an even
higher quality, and more expensive, wiring alternative.

Low-end systems most often employ some derivation of
the RS-232 or 449 systems, often using a simple shielded
twisted pair cable for the purpose. (If one conductor is
grounded, a shielded pair can sometimes be considered a
three-wire cable.) The higher cost, higher speed, longer
distance networks use coaxial cable. We can see, then, that
we need to have the final version of our system fairly well
worked out before we start building cables into the wall.

We generally find some version of the RS-232 cable used
with time sharing systems and multiprocessors, twisted pair
for the cheaper LANSs, and coaxial cable (or fiber optic
paths) where high-performance networks are involved.

One of the most interesting cabling/interface systems,
from the viewpoint of the interfacer, is the IEEE-488 bus.
Unfortunately, it is seldom used in business or home
computing; it was designed for control purposes and might
actually be the best available system for the tinkerer. It is
much used by industry, and at one time Commodore made
an attempt to adapt it to their micros. One of their early
models drove both the disk system and the printer via
IEEE-488.

The 488 bus is a parallel system (many wires involved)

L

Bus Topoiogy Star Topology Ring Topoiogy

20 Tre Computer journal

with some unusual features. Take topology: there is one and
only one kind of connector and cable. Each connector is both
male and female. This means that if you have two or more
devices to connect you still need only one port on the central
device, i.e. your computer. The second cable plugs into the
back of one of the existing connectors. The third plugs into
any available position—there is always room for one more.
Each time you add another cable you automatically add the
socket for the next one!

If you connect several devices “end-to-end” it looks like a
typical bus topology. You could as easily connect devices
two through four, or five, or whatever, directly to the first
device by “piggy-backing” the connectors, in which case the
layout would resemble a star configuration. Electrically,
they will still all be in parallel. The topology then is “bus”
even though it might physically look like a star or ring. You
might have connected, on the same port, a printer and disk
drive and several sensors, control devices, or items of test
equipment. Theoretically anything that functions with 8-bit
data can be accommodated by the system, and can be
connected to the same port.

You can forget things like baud rate; data can be
exchanged over the same bus by different kinds of devices
and at different rates of speed. The 488 is really a
sophisticated communication system which is under control
of the central computer, which "knows” the address of each
device and its capabilities, and controls their input and
output accordingly. There is a common data bus and a
control bus that knows how to access and control all

COMPUTER
CONTROLLED
ROBOTICS

1. DRIVER BOARD 5005D8B $75 *
45 x 38" xO5" T CMOS CCMPATIBLE.
OPTICALLY iNSOLATED FOR 4 PHASE MOTORS 2AMPS 5C vOLTS

Z.LINEAR ACTUATOR 60] AM $75

2W. 16 OZ OO1"31EP 3
15 1ae HOLDING FO
3. LINEAR ACTUAfOR 501 AM $43
V35w 1502 CO2" STEPSIZE
O2 HOLDING FCRCE 188 N TRAVEL
4. STEPPER MOTOR 201SM $ 16
5V IW. 10 OZ 15> STEP SiZE
O 8 OZ IN HOLDING TORQUE
5. STEPPER MOTOR 301 SM §$59
12V. 215 OZ 1.8° STEP SIZ
80 OZ N HOLOING TORGUE

6. MOTOR MOUNT FOR 301 SM $25

/ MOTOR MOUNT FOR 501 AM $12

8. MOTOR MOUNT FOR 501 AM §$ 13
% EDGE CONNECTOR § 3.50
"AMSI core

BOX 651, SMITHTOWN, LI, N.Y. 11787

(516) 361-9499

connected devices.

We don’t often encounter this system in micros because
its initial cost is high, compared with a simple Centronics or
RS-232 port. There are, though, plug-in 488 controller boards
available for the S-100 machines. (Pickles & Trout, Goleta,
CA., or D&W Digital, Hathaway, CA.)

With IEEE-488 a central device (usually a computer of
some kind) acts as system controller. The other devices can,
to use the jargon, “talk,” “listen,” or both, according to how
they have been configured. There is a complete handshaking
system between the controller and each talker or listener.
Data to or from a high speed device, or a low speed device,
passes over the common data bus at the rate that has been
determined for each. If data is sent to more than one device
at a time the slowest one effectively controls the rate —thus
devices of different speeds can be accommodated on the
same bus.

The bulk of the cable, as in the case of the ribbon cables
we are familiar with, imposes a practical limit on the
distance and the configuration.

Cabling is an important part of any multi-user system.
The kind of cable used, the topology, the cost, and all the
other limitations are determined at the time the system is
designed. Once installed it becomes practically invisible and
trouble free, but it is nevertheless one of the important
ingredients. a
For More information, see the following books:

Computer Communication Techniques, Howard W. Sams, #21998
The Local Ares Network Book, Howard W. Sams, 222254

Tre lomrputer Lourma 21

WRITE YOUR OWN THREADED LANGUAGE

Part Four: Conclusion
by Douglas Davidson

The last article finished the presentation of the
primaries. All that is needed now to get the language up and
running is a few secondaries. We will be able to define most
of the secondaries by using the facilities of the language
itself, but certain of the most important secondaries must be
hand-compiled; once they have been defined, the language
will support its own growth. Enough information has
already been presented about the coding of secondaries to
write all of those that must be hand-compiled. The high-level
definitions of most of these are given in Figure 1. Coding
from a high-level definition is pretty straightforward: most
words are represented simply by calls to them, while the
special constructions presented in the last article are
handled as specified there.

The main functions performed by secondaries are the
outer interpreter and the compiler. The outer interpreter is
the part of the language that is normally being executed; it
accepts input lines, parses them, and executes them. This
function is performed by QUIT and its subprogram
INTERPRET. The compiler is used to create new
secondaries. It is invoked with : , which first uses CREATE
to make a header, then takes over the job of parsing with its
subprogram] . This is not enough, however, for all the
functions of the compiler. Certain words, called immediate
words, are designated so that the compiler does not compile
them when they appear in its input stream, but instead
executes them immediately. The high bit of the length byte
of the header is high for an immediate word. Immediate
words are used to implement all of the control structures
described in the last article. Most immediate words will also
be compiling words; a compiling word is one that adds bytes
to the word currently being defined. Compiling words can be
created with the word COMPILE; immediate words can be
created with the word IMMEDIATE. The word (COMPILE)
forces an immediate word to be compiled instead of
executed. The word (') allows the address of another word to
be used. One note: the word NULL must be an immediate
word for an exit from] to be possible without leaving : .
With NULL an immediate word, word definitions can
extend over several lines. (Ed. note: see correction on
page 26./

The other special class of words is the defining words;
defining words create entries in the dictionary. Defining
words can be created using CREATE and DOES).
CREATE makes a dictionary header. DOES > designates
the portion of a definition that follows it to be the code that
is run when a word created with the defining word is
executed. The defining word : uses the routine SMUDGE to
flag words in the process of definition so that if an error
occurs in the process of definition the half-created word will

be removed from the dictionary, and so that the half-created
word cannot be referenced while it is being defined. This is
so that words can be redefined with the new definition
referring to the old one (note that this does not change any
words already defined with references to the old definition).

ALLOT This word reserves space in the dictionary. It
simply adds the TOS to H.

» This word adds a value to the end of the dictionary; it
is the basis for most of the creation of words. It simply
stores the TOS at the location pointed to by H, then
ALLOTSs two bytes.

C, is the single-byte version of , . It simply stores the
low byte of TOS at the location pointed to by H, then
ALLOTSs one byte.

QUERY This word gets an input line at S0. It uses SO as
input to EXPECT, then resets DIN to zero.

NUMBER converts a string of characters at H to a
number, with error-handling. It requires H to be in TOS
when it is called; it swaps a zero into NOS, then calls
”BINARY. It subtracts H from the address returned by
D>BINARY of the first non-convertable character, then
subtracts from this the length of the string, stored at the
location pointed to by H. From this result one is subtracted;
if the final value is non-zero, (ABORT") handles the error by
printing the offending string followed by a question mark.
Otherwise just the number is returned.

INTERPRET This word interprets an input line. It
consists of an endless loop where each pass casues a string
of characters separated by spaces to be taken off the input
line. -’ checks to see if the string is the name of a word; if it
is not, NUMBER tries to convert it to a number and aborts

Secondaries to be hand—<coapiled.

Standard foreat is : nase definition § .

All nuasrical values are given in hexadecisal§ 28=J8R,
60=RTS, four—digit values are PFA's: 1132=(LIT) 1344e,
1358=C, . The routine to reset 8 sentioned in QUIT is the
sachine code equivalent of S @ 2 - 8 !¢ The pseudo—word
ABAIN msrely signifies an uncandition (i.e., infinite) loop
back to the BEGIN statewment.

P ALLOT H + '

: , HERE ' 2 ALLOT

: C, HERE C' 1 ALLOT 3

: QUERY S# @ EXPECT & >IN '

: NUMBER 6 SWAP >BINARY HERE - HERE C8 - 1 - ABORT® 7"

: INTERPRETY BEGIN -’ IF NUMBER E1 8F EXECUTE 78TACKX ABORT®
STACK EMPTY" THEN ABAIN §

: " - ABORT" ?° 4

: (COMPILE) " 20 C, , + IMEDIATE

: COMPILE 1344 28 1356 29 DUP 1132 2¢ " tt1X2 29 C, , , C, ,
s Cy, » C, , 3 IMEDIATE

T) " 113220 C, , , §} IMEDIATE

: QUIT (here is a routine to reset 8) .° READY" BEGIN CLEAR
CR QUERY INTERPRET .* OK" ABAIN §

:] BEGIN -" IF NMUWMBER 1132 20 C, , , ELSE DUP 7 - @ #< IF
EXECUTE 7BTACK ABORT" STACK EMPTY" ELSE 20 C, , THEN THEN
ABAIN §

¢ : CREATE -3 ALLOT SMUDEE BESBIN 1 GUERY ABAIN 3

t 3 40 C, BMUDBE POP POP | IMMEDIATE

¢ . DUP ABS <0 #S SIBN 8> 8PACE ¢

Figure 1

22 Tre Corrputer sournal

if it isn't one. If it is the name of a word, the word is
EXECUTEGJ and the stack is checked for underflow.

' This word finds the address of the word whose name
follows the ' in the input line (e.g.,, ' DROP), with error-
handling. It simply calls -', then (ABORT").

(COMPILE) This immediate compiling word forces the
compilation of the immediate word following it in the input
line. It calls ', then compiles a call to the address returned.

COMPILE This immediate compiling word is used to
create a compiling word. It is used in a sequence that
compiles the word whose name follows the COMPILE in the
input line.

) This immediate compiling word places the address of
the word whose name follows the ('} in the input line as a
literal in the word in which () is used. It uses ', then
compiles a call to (LIT), then compiles the address recovered
by '

QUIT This is the main executive. QUIT is essentially an
endless loop, CLEARIng the stacks and then calling QUERY
and INTERPRET. First QUIT clears the main stack by
setting S to S0-2 (as implemented here, this demonstrates
the flexibility of the language in mixing machine code with
secondaries. See Figure 1 and the assembly listings), then it
prints a system message. It ther starts the endless loop,
which consists of a CLEAR of the other stacks, a carriage
return, a8 QUERY, an INTERPRET, and a printing of the
message * OK".

1 This word is the equivalent of INTERPRET for
compilation; it parses and compiles a single input line. It is
an endless loop; in each pass of the loop a string separated
by spaces is taken off of the input line. -' checks to see if the
string is the name of a word; if it is not, NUMBER tries to
convert it to a number, and aborts if it is not one. When a
number is successfully converted, a call to (LIT) is compiled
followed by the number. If the string is the name of a word,
that word is checked to see if it is an immediate word. If it
is an immediate word it is executed and the stack is checked
for underflow. If the word is not immediate, a call to it is
compiled.

This defining word is the equivalent of QUIT for
compilation; it compiles a word. It first calls CREATE to
make a header, using the string next on the input line as the
name of the word. The call to (VARIABLE) that CREATE
put at the PFA is deALLOTed, and the length byte is
SMUDGEd. An endless loop then calls | and gets another
line.

; This immediate compiling word ends the definition of a
word and exits from : . A return code is compiled, SMUDGE
is called to restore the length byte, and two calls to POP
ensure that the return will be not to] or to : , but to
INTERPRET.

This word prints a signed number, using the number
output words presented in the last article.

SET This last primary is not really part of the language,
but is a very useful development tool. It essentially sets the
language to remain in its present state ; that is, it moves the
current values of H and CURRENT to the locations from
which STARTUP takes them. It also leaves the current

Secondaries to be typed tn.
All nuserical values are given in hexadecissl, so BASE
should be set to $18. In 45682 sachine |anguage, 9=CL C,
ZO-JR, 99=BCC, BO=BCH; A2=" in ASCII.
: HEX 18 BASE '
: DECIMAL A BASE ' 3
: VARIABLE CREATE ,
: CONSTANT CREATE , (") (COMBTANT) CURRENT @ 7 + '
: IMEDIATE CURRENT @ DUP Ca 88 XOR 9WAP C' 3 I1MMEDIATE
: FORBET " DUP 6 - H ! 2 - @ CURRENT '
D ADJUST 1 >IN «!'
¢ .° ADJUST COMPILE (.") A2 WORD C& 1+ ALLOT ADJUST
XF'GD[ATE
IFFER HERE 1 ALLOT
: 80UP HERE OVER - 1- SwAP C! 3
. S0BACK HERE - 1- C,
: IF COMPILE (IF) B8 C,
: THEN BOUP 1 IMMEDIATE
: ELSE 18 C, 79 C, IFFER >R BOUP R> 3 [MMEDIATE
: DO COMPILE >R COMPILE >R HERE | [MMEDIATE
LOOP COMPILE (LOOP) 9@ C, GOBACK COMPILE 2RDROP §
lﬁtDlATE
: +O0P COMPILE (ALO0OP) 99 C, BOBACK COMPILE 2RDROP 3
XF'EDIRTE .
BEGIN HERE } IMMEDIATE
: WHILE COMPILE (IF) B® C, IFFER § IMMEDIATE
: UNTIL COMPILE (IF) 99 C, IFFER § IMEDIATE
! END 18 C, 99 C, SWAP OOBACK SOUP § IMMEDIATE
: DOES> COMPILE (DOES>) COMPILE DODOER |1 (MMEDIATE
ABORT" ADJUST COMPILE (ABORT®") A2 WORD C@ 1+ MT ADJUBT
| IMEDIATE

IFFER § I1MMEDIATE

Figure 2

length of the language plus a little in TOS, for use in saving
the current version of the language to disk. SET is used
whenever the language needs to be able to be restarted in
its current state; it can be used, for example, after every
few definitions in the next list have been entered. One
caution: always use SET after anything that has been SET
into the dictionary has been forgotten.

Once these words have been entered, the language is
ready to operate (pending debugging, of course). Debugging
is probably easiest if breakpoints are piaced at strategic
locations along the path of execution—at the routines called
by the main executive, to start out with. The most
important storage locations can be checked at each
breakpoint to make sure that things are running properly.
Once the main executive is running, printout—the
routine —must be debugged. When . is working, most of the
primaries can be tested directly from the main executive.
Then the secondaries and particularly : can be debugged by
the same techniques. Once all of these are working
correctly, the language can be used to enter the rest of
itself, the words which follow.

The rest of the language is embodied in the following
secondary words. They include all of the words to
implement the control structures; the important defining
words VARIABLE and CONSTANT, the dictionary
management words IMMEDIATE and FORGET, the string
output word .”, and a few others. They should be entered a
few at a time, then tested, and SET into the language. Once
all of them have been entered, the language is finished and
ready for programming.

HEX This word sets the number input/output base to
hexadecimal; it simply stores a $10 in BASE.

DECIMAL sets the number input/output base to
decimal; it simply stores a $0A in BASE.

VARIABLE This defining word creates a variable with
the string just after the VARIABLE in the input line for a

name and TOS for an initial value. It calls CREATE to make
a header and , to store the initial value and reserve space
for it.

CONSTANT This defining word creates a constant with
the string just after the CONSTANT in the input line for a
name and TOS for its value. It calls CREATE to make a
header, then replaces the call to (VARIABLE) that
CREATE stored with a call to (CONSTANT). It then calls ,
to store the value and reserve its space.

IMMEDIATE This immediate word makes the latest
and highest word on the dictionary into an immediate word
(or changes it from an immediate word to a normal word). It
simply toggles the high bit of the length byte.

FORGET This word removes from the dictionary the
word whose name follows the FORGET in the input line,
along with anything after that word in the dictionary. It
uses ' to get the address of the word, then sets H to the
word's NFA and CURRENT to the word's link.

ADJUST This word is useful in the definitions of .” and
ABORT" ; it increments >IN by one, thus skipping over one
character.

This immediate compiling word compiles a sequence
that prints the string following the .” in the input line,
terminated by a quotation mark (e.g., . HELLO THERE").
It calls ADJUST to skip the space that must necessarily
follow the .” , then compiles a call to (."), then uses WORD
with a quotation mark for the separation character, then
ALLOTSs one more byte than the length of the string, then
uses ADJUST to skip the terminal quotation mark.

The words implementing the control structures use the
stack to store address references; they are built from
several utility words which do such things as compile a
forward or a backward branch.

IFFER This word is useful in the definitions of some of
the control structure compiling words. It puts the value of H
on the stack, then ALLOTs the one byte necessary for a
relative branch reference.

GOUP This word is useful in the definitions of some of
the control structure compiling words. It subtracts the value
in TOS from the value of H, subtracts one from this
difference, then stores the (one-byte) result at the address
which was in TOS.

GOBACK is useful in the definitions of some of the
control structure compiling words. It subtracts the value of
H from the value in TOS, subtracts one from this difference,
and compiles the (one-byte) result into the dictionary.

IF This immediate compiling word marks the start of a
conditional. It compiles a call to (IF), then compiles a BCS
(branch on carry set = $B0) and calis IFFER.

THEN This immediate word marks the end of a
conditional. It is just an immediate version of GOUP.

ELSE This immediate compiling word marks the

separation between the two branches of a conditional. It
compiles an unconditional branch, in this implementation a
CLC and a BCC (clear carry=3$18 and branch on carry
clear = $90), then executes IFFER, temporarily shuffles
aside the TOS and calls GOUP, then restores the TOS.

DO This immediate compiling word marks the start of
an indexed loop. It compiles two calls to >R, then puts the
value of H on the stack. Note that there is some choice here;
as presented, DO will take the loop starting value from NOS
and the final value from TOS. This convention is opposite to
that of FORTH; to use that of FORTH, simply insert a
COMPILE SWAP at the start of the definition of DO. It
may be advantageous to define DO as in FORTH, and to
define another word FOR with the definition given for DO.

LOOP This immediate compiling word marks one sort of
end to an indexed loop. It compiles a call to (LOOP),
compiles a BCC (branch on carry clear = $90), calls GOBACK.
and compiles a call to 2RDROP.

OOP This immediate compiling word marks the other
sort of end to an indexed loop. It is identical to LOOP,
except that (OOP) is compiled in place of (LOOP).

BEGIN This immediate word marks the start of a non-
indexed loop. It is just an immediate version of HERE: it
places the value of H on the stack.

WHILE This immediate compiling word marks one sort
of exit test for a non-indexed loop. It compiles a call to (IF),
compiles a BCS (branch on carry set = $B0), and calls IFFER.

UNTIL This immediate compiling word marks the
opposite sort of exit test for a non-indexed loop. It compiles
a call to (IF), compiles a BCC (branch on carry set = $90), and
calls IFFER.

END This immediate compiling word marks the end of a
non-indexed loop. It compiles an unconditional branch, in
this implementation a CLC and BCC (clear carry = $18 and
branch on carry clear = $90), then SWAPs the TOS and NOS
and executes both a GOBACK and a GOUP.

DOES> This immediate compiling word marks the end
of the compilation-time portion of a defining word and the
start of the run-time portion. It simply compiles calls to
(DOESY) and DODOES.

ABORT" This immediate compiling word compiles a
sequence that executes a conditional error abort. This
sequence will print the string as an error message,
terminated by a quotation mark, which follows the ABORT"
in the input line (e.g., ABORT" NOW YOU'VE DONE IT").
ABORT" first calls ADJUST to skip the space that must
necessarily follow the ABORT", then compiles a ecall to
(ABORT”) and uses WORD with a quotation mark as the
separation character to get the string, then ALLOTs one
more byte than the length of the string, and uses ADJUST
to skip the terminal quotation mark.

There are a few more secondary words which, though not
necessary, may be useful:

U. This word prints the TOS taken as an unsigned
integer quantity. It is defined by : U. DUP # #S #>
SPACE ;.

? This word prints the (two-byte) value at the address
given in TOS. It is defined by : 2 @ . ; .

EXIT This immediate compiling word permits a
premature exit from a word. It simply compiles & return
instruction (=$60). It is defined by EXIT 60 C, ;
IMMEDIATE .

24 The Computer Journai

SPACES This word prints a number of spaces, the
number being given in TOS. The definition is simply :
SPACES 1 SWAP DO SPACE LOOP;.

RECUR This word allows recursion. Normally the name
of the word being defined is SMUDGEd so that it cannot be
referred to; this is so that words can be redefined, with the
new definition referring to the old. If a word actually wishes
to call itself, the immediate word RECUR should be used
both before and after the self-reference. RECUR is simply
an immediate version of smudge, defined by : RECUR
SMUDGE ; IMMEDIATE .

The definitions of many of these words may seem
incomprehensible at first, but they should become clear with
study and experimentation. They will also repay study, in
the sense that an understanding of the workings of the
words that make up the language will teach you how to
program in the language. Now a short application should
demonstrate some general principles. We develop a simple
bubble sort and a quicksort (Figure 3).

First, we require an array of 50 random numbers. The
word RANDOM uses a simple algorithm to produce pseudo-
random numbers. The defining word ARRAY then is
compiled; ARRAY defines an array of two-byte values of a
given length. CREATE first creates a header, then 2 *
ALLOT multiplies the length by two (the number of bytes in
each entry) and allots that much space. DOES>> closes off
the main portion of the defining word. The rest of the code
(SWAP 2 * 2 -) will be executed only when the array (in this
case NUMBERS) is invoked. NUMBERS will be invoked
with an index from 1 to 50 in TOS; DODOES will then place
the PFA of NUMBERS on the stack. SWAP 2 * 2 . then

" adds twice the index to the PFA and subtracts 2 to get an
address.

FILL simply fills RANDOM with 50 random numbers;
PRINT prints out the values in RANDOM. SWITCH is a

Bubble sort and Quicksort

12343 VARIABLE SEED
: RANDOM SEED @ 16867 & DUP SEED '
2 ARRAY CREATE 2 » ALLOT DOES> SWAP 2 & ¢+ 2 -~)
36 ARRAY NUMBERS
: FILL 1 56 DO RANDOM | MNSERS ' LOOP j
S PRINT £t 50 DO | MUAMBERS @ . CR LOOP §
: SWITOM NARMBERS SHAP NUMBERS OVER OVER @ DWAP @ ROT ' S
ty
: BUBBLE i BEGIN
DUP DUP {1 + MAUMBERS €@ SWAP NLMBERS ¢ <
IFDUPDUP £ ¢« SNITCH §| ~DUP 6 =
IF 1 + THEN
ELSE | + THEN
DUP 5@ < WHILE END ." NUMBERS SORTED"

: PIVOT OVER OVER OVER OVER ¢+ 2 / NLAMBERS @
BEBIN
BEGIN OVER MUMBERS @ OVER > WHILE SWAP | - BNAP
END
ROT SWAP
BEGIN OVER NLIMBERS @ OVER < WHILE SWAP 1| + SuAP
END
ROT ROT OVER OVER SWITCH
OVER QVER 1 + > WHILE 9WAP ROT END
ROT DROP SHAP §
: RECUR SMUDGE) IMEDIATE
: QUICK OVER OVER 1§ - <
IF PIVOT ROT RECUR QUICK QUICK RECUR
EL9E OVER NUMBERS @ OVER NUMBERS @ >
IF SMITCM
ELSE DROP DROP THEMN
+“ NUMBERS SORTED" 3
Figure 3.

THEN

utility word to exchange two elements of NUMBERS, whose
indices are given in TOS and NOS. Diagram the state of the
stack to understand how it works.

BUBBLE starts at index 1; it takes the index and the
index plus 1, obtains the corresponding values from
NUMBERS, and compares them. If .they are out of order,
SWITCH is called in and the index is reduced by 1—unless
it is 1 already. If they are not out of order, the index is
increased by 1. If the index is less than 50, the process
repeats. At the end, a message is printed out.

Type in the words and variable definitions down to
BUBBLE as shown; then execute FILL, PRINT, BUBBLE,
and PRINT again. This should show something of the data-
handling features of the language, the us® of the stack, and
the overall speed of the language, as well as the basic
pattern of breaking problems up into several parts, each of
which forms a word.

The routine PIVOT takes as input two indices from the
stack, then shuffles the portion of NUMBERS between
those two indices into an upper part all greater than some
pivot and a lower part all less than the pivot; it returns with
the lower index of the lower part, the uppep index of the
lower part, the lower index of the upper part, and the upper
index of the upper part stored on the stack in that order.
The first line finds the pivot value, arbitrarily that of the
cell midway between the indices. The first inmost loop
moves the upper index down until it hits a value less than
the index; the second inmost loop moves the lower index up
until it hits a value greater than the index. These values are
SWITCHed, and then the outer loop repeats until the
indices meet.

RECUR is the immediate word described above for
recursion. QUICK is the quicksort routine; it takes as input
the upper and lower indices between which it is to sort. If
these two indices are not one apart, the space between them
is PIVOTed and the resulting two parts are QUICKsorted. If
they are one apart, the two values are placed in order. A
message is then printed out. Type in PIVOT, RECUR, and
QUICK in the order shown, then execute FILL and PRINT.
To use the quicksort, type in 1 50 QUICK, then execute
PRINT again. This should show something of the power of
recursion.

The possibilities for expansion of the language are great;
some form of mass storage is still needed, and a text editor
would be a very nice addition. Beyond that, graphics, sound,
and various sorts of output can be added. Whatever
functions are required can be coded, either as primaries, as
secondaries, or as a mixture of both. A floating point
package is a possibility, as are various other sorts of number
forms. The chief feature of the language is its flexibility — its
ability to be molded into any desired form. [|

*

s ALLOT «»

«*
#3 Ci CC CC #B 13
20 ES 12 H
4C 13 €D +!

1332:
1338:
133B:

The Computer Journal 2%
& *
-~ s - * a»
* *
- 133E: #1 AC A@ AS 32 13 13DB: 61 A7 AG® AG AE 13
1344: 26 D6 &€ HERE 13E1: 20 33 &€ -
1347: 20 oC ' 13E4: 26 68 11 (ABORT™)
1344: 20 32 11 (LIT) 13E7: 82 A BF . e
- 134D: 62 00902 13EA: 60 '
134F: 4C 38 13 ALLOT .
- % (COMPILE) s
*% C, = »
- » 13EB: 89 AB C3 CF DB 13
1352: 62 C3 AC AS 3E 13 13F1: 26 E1 13 ,
1358: 20 D8 9€ HERE 13F8: 28 32 11 (LI
. 135B: 20 38 @D c! 13F7: 20 o6 0029
- 13SE: 26 32 11 (wIm 13F9: 28 568 13 c,
© 1361: 61 88 0001 13FC: 4C 44 13 .
1363: 4C 38 13 ALLOT .
. »s COMPILE &#
— #% QUERY #« -
* 13FF: 87 C3 CF CD EB 13
13662 05 D1 DS CS 52 13 1495: 20 32 11 (wim
136C: 20 11 13 a9 1468: 44 13 s1344
— 136F: 20 S3 @D e 146A: 26 32 11 (wim
1372: 28 88 @D EXPECT 146D: 28 06 0029
13735: 28 32 11 (WwIT) 140F: 28 32 11 (wim
1378: 00 o8 0000 1412: 58 13 1356
— 137A: 20 F@ 12 >IN 1414: 28 32 11 WwIT
137D: 4C F3 oC ' 1417: 28 o8 0829
. 1419: 29 1C #8 DUP
#5 NUMBER ## 141C: 29 32 11 WwIT)
- . 141F: 32 11 1132
1399: 86 CE DS CD 66 13 1421: 28 32 11 win
1386: 20 32 11 (wLIm 1424: 20 o9 0028
1389: o0 of 0800 1426: 20 E1 13 ,
- 138B: 20 &9 88 SHAP 1429: 28 32 11 wIn
138E: 28 F9 OF >BINARY 142C: 32 11 1132
1391: 28 D8 OE HERE 142E: 28 32 11t (wIm
1394: 29 B9 @A - 1431: 29 o8 o028
- 1397: 20 D8 &€ HERE 1433: 20 38 13 c,
139A: 26 &E 8D ce 1436: 28 44 13 .
139D: 29 BY @A - 1439: 29 44 13 R
13a8: 28 32 11 WwIm 143C: 28 38 13 c,
- 13A3: 61 o8 sese1 143F: 29 44 13 .
13A5: 20 B9 @A - 1442: 28 44 13 .
13A8: 20 68 11 (ABORT") 1445: 28 38 13 c,
13AB: 1 BF T 1448: 20 44 13 .
- 13AD: &8 ' 144B: 28 58 13 c,
- 144E: 4C 44 13 .
#¢ INTERPRET #& *
“- @ * (") =»
- 'A
T :x ;: §§ 2 :e?o.c 3. 1451: 83 AB A7 A9 FF 13
13B7: 20 93 18 (IF) 1457: 20 E1 13 :
138a: DS B6 1454: 28 32 11t (win
13BC: 28 86 13 NUMBER 145D: 32 11t 1132
T 13BF: 18 98 F2 phoggoss 145F: 28 32 11 (Wwim
13C2: 28 48 12 EXECUTE 1462: 20 09 weze
13CS: 20 AE #E 7STACK 1464: 26 38 13 ¢
T 13C8: 26 48 11 (ABORT*) 1467: 20 44 13 ’
13CB: 6C A6 D3 - g ““"C“"" ’
13CE: D4 C1 C3 TAC
13D1: CB A® CS KE o QUIT =e
gg. f’g g: g; D9 g}: 144D: 64 D1 DS C9 S1 14
1473; 38 SEC
1474: AS 6C LDA SeL
_ 1476: E9 82 SBC 0982

26 The Computer Jourra

1478: 85 060 STA SL 1529: &0 80 0040
147A: AS 6D LDA SoH 152B: 28 S8 13 c,
147C: E9 06 SBC #3080 1S2€; 26 12 oOF SMUDGE
147E: B85 &1 STA SH 1531: 20 44 OF POP
1486: 20 7 1t «.™) 1534: 20 44 OF POP
1483: @5 D2 CS “RE 1537: 60 $
1486: C1 C4 D9 ADY" *
1489: 20 FA OE BEGIN CLEAR = . 48
148C: 26 B4 @D CR .
1468F: 29 &C 13 QUERY 1538: 81 AE AB AG 29 1S
1492: 20 B4 13 INTERPRET 153E: 26 1C 28 DuP
1495: 20 67 11 (™) 1541: 20 @6 OB ABS
1498: 83 A® CF CB " OK* 1544: 26 S5 OF <®
149C: 18 99 EA AGAIN 1547: 290 6C OF *S
- 154A: 20 C8 oF SION
et] ww 154D: 28 Al OF .
» 1556: 4C BD @D SPACE
149F: 81 DD AG AB &D 14 -
14AS: 26 33 € BESIN -’ % SET s
14A8: 26 93 10 (IF) .
14AB: BS 19 1553: 63 D3I CS D4 38 15
14AD: 26 846 13 NUMBER 1559: AS o4 LDA HL
14B@: 28 32 11 Wwimn 155B: 8D 28 13 STA STARTUP+$12
14B3: 32 11 $1132 1SSE: AS 05 LDA HH
14B%: 28 32 11 (LIT) 1566: 80 29 13 STA STARTUP+8$13
14P6: 20 o9 20628 1563: AS FA LDA CURRENTL
14BA: 28 S8 13 c, 1565: 8D 2E 13 STA STARTUP+818
14BD: 20 44 13 . 154648: AS o8B LDA CURRENTH
14CP: 20 44 13 . 156A: 8D 2F 13 STA STARTUP+$19
14C3: 18 98 DF ELSE 156D: 26 D8 o€ HERE
14C4: 20 1C 96 DUP 1578 26 32 11 (LIT)
14C9: 28 32 11 (wim 1573: Fe 87 s7F®
14CC: 07 09 0067 1575: 4C BY 8 -
14CE: 20 B9 64 -
14D1: 26 S3 #D e
14D4: 20 58 @9 8<
14D7: 20 93 10 (IF)
14DA: BO 19
14DC: 20 48 12 EXECUTE CORRECTION
14DF: 20 AE OE ?89TACK
::Sg ;"g :2 I‘):l'» :Ang) In part three of ""Write Your Own Threaded Language,
14E68: DA C1 C3 TAC found in issue number 11, there is an error on page 10.
14EB: CB A8 CS K E In the definition of NULL, the first byte of the header should
14EE: CD DO D4 D9 HPTY® not be 01, but 81 instead. This makes null an immediate
14F2: 18 90 B9 ELSE) .
18FS: 28 32 11 wim word. This change needs to be made in both the
14F8: 20 06 0020 assembly and machine code. Without this, word definitions
14FA: 20 38 13 C, are restricted to one line.
14FD: 20 44 13 .
1509: 18 99 A2 THEN THEN AGAIN *
. % NULL *»
8 T %
. *
1503: 01 BA AG AS 9F 14 <81> 8D A AP 99 12
1509: 20 SF 12 CREATE
158C: 20 32 1t (LIT)
1SOF: FD FF SFFFD
1511: 290 38 13 ALLOT
1514: 20 12 oF SMUDBE
1517: 20 AS 14 BEGIN |
15tA: 28 &C 13 QUERY
151D: 18 96 F7 ABAIN
*
s § w=

1529: 81 BB A@ A@ 03 1S
1526: 20 32 11 (LIm

The Computer Lourma 27

Books of Interest

Soul of CP/M

by Mitchell Waite and Robert Lafore
Published by Howard W. Sams & Co., Inc.
4300 West 62nd Street

Indianapolis, IN 46268

382 pages, T " x ¢", $18.95

The CP/M operating system is a very powerful tool, but
most books only show you how to use the built in commands
such as DIR, REN, and ERA. The manual supplied by
Digital Research is basically a list of commands without any
instructions on how to modify them or use them from your
programs. There are a number of books on CP/M, but most
of them are beginners guides which tell you how to boot the
system, change drives, use STAT and PIP, etc. There are a
few good books which contain detailed information on
rewriting CP/M for special applications, but most of these
books start out on a high level and assume that you already
understand how the CP/M functions work, that you are
familiar with assembly language programming using ASM,
DDT and LOAD, and that you know the mechanics of
modifing the BIOS.

Soul of CP/M begins by describing the 8080, 8085, and Z-
80 CPUs, and then explains the structure of CP/M. Next, it
introduces DDT and 8080 assembly language with a step by
step example of using DDT to enter and run a short
program using the Console Output System call. After
several examples of using DDT to enter and save short
programs it shows how to use a word processor to write a
text file assembly language program and assemble it with
ASM.

The authors assume that the reader has no knowledge of
assembly language programming or the CP/M system, and
they very thoroughly explain each assembly language
instruction and system call when they are first used. After
establishing the basics, the authors continue with examples
of utility programs using additional instructions and calls.
The following list of contents will give you an idea of the
broad coverage in this book.

¢Introduction. Who Is This Book For, What This Book
Will Teach You, 8080 8080A 8085 Z-80— What's the
Difference?, What You Need To Know To Get the
Most Out of This Book, How This Book is Organized.
*Chapter 1 The Big Picture: How CP/M Is Organized.
What Is an Operating System Anyway?, What's So
Great About CP/M?, The Parts of CP/M, 8080
Architecture, DDT: The Programmer's X Ray and
Probe.

sChapter 2 One Toe In The Water: Console System

Calls. Console Output System Call, Get Console
Status, Barber-Pole Display Program, Console Input,
Executing Programs From CP/M, System Reset, A
Warm Boot.

oChapter 3 Getting In Deeper: Advanced Console
System Calls. Print String, Read Console Buffer, Echo
Program, Name Display Program, Direct Console 1/0,
List Output to Printer, Reader Input, Punch Qutput,
Get 1/O Byte, Set 1/0 Byte.

*Chapter 4 Using The Assembler. What's an
Assembler Do Anyway?, What ASM Does, The
DECIBIN Routine Reads Decimal From Keyboard,
DECIHEX Program Converts Decimal to Hex on
Screen, BINIHEX Binary to Decimal Conversion
Routine, Using CP/M's Submit Utility.

*Chapter 5 Disk System Calls. Records - Files -
Tracks - Sectors - Allocation Units - Extents - and
Goodness Knows What Else, Talking to BDOS, Open
File, The Problem With Where the DMA Is Located,
Read Sequential System Call, Set DMA Address,
TYPE2 Program Imitates the TYPE Command,
LINES Program Prints Number of Lines in Text File.
*Chapter 6 Writing to the Disk. Make File, Write
Sequential Record, Close File System Call, Program to
Write a Sequential Record, STORE Program Stores
Text in File, Delete File System Call, Random
Records, Read Random System Call, Write Random
System Call, RANDYMOD Program to Modify a
Random Record, Compute File Size System Call, Set
Random Record System Call.

*Chapter 7 Soul Searching: Wildcards and the Disk
Directory. How CP/M Stores Files on the Disk, Search
For First System Call, Wildcards, Search For Next
System Call, Erased Files, Saving an Erased File, The
Bit Map, WORDS Program Counts Words in Files and
Uses Wildcards.

*Chapter 8 Teamwork: Using System Calls From
Basic. Where Do We Put the Assembly Language
Program in Memory?, How To Get the Assembly
Language Program Where We Want It To Go, How
Do We Transfer Control Between BASIC and the
Assembly Language Routine?, How Do We Pass
Arguments. Between BASIC and the Assembly
Language Routine?, BINEHEX2 Routine Called From
BASIC, Other Ways To Put the Assembly Language
Routine Into Memory, HEXIBIN2 Passing Arguments
to BASIC From an Assembly Language Routine,
Operating on Strings With an Assembly Language
Routine.

*Chapter 9 The Innermost Soul of CP/M: How To

28 Tre Computer Journa

PRODUCT EVALUATION: MACINKER

by Art Carlson

Have you checked the copy from your printer lately? You
may be surprised if you do—the print may have been nice
and dark when you started with a new ribbon, but the image
slowly gets lighter and lighter as you use it. The change is
so gradual that you may not have noticed that the print is
now grey instead of black.

I didn't realize how bad the output from my Epson MX-80
was until I was checking a listing against an older copy, and
could see the difference. The copy used for printing the
magazine has to be black to ensure good reproduction. I
purchased a new Epson type ribbon from an independent
supplier, which temporarily corrected the problem. The
ribbon then proceeded to go through the same routine again,
letting the quality deteriorate until I happened to see new
and old copy together. This time I bought three ribbons so
that I could change on a regular schedule before the print
quality got so bad, but the new ribbons were just as light as
the old ribbon I was ready to throw out! That's when I got
real interested in reinking ribbons.

I had originally felt that I couldn't justify the expense of
an inker since I only had one printer, but a little figuring (I
still use a slide rule for rough estimates like this because I
don’t have to carry approximations out to many digits)
showed that in the long run it was cheaper to get an inker
than to continue buying ribbons—especially if some of the
new ribbons were marginal to begin with.

At this time Computer Friends (6415 SW Canyon Court,
Suite #10, Portland, OR 97225) sent a Maclnker for
evaluation. We proceeded to ink the three defective new
ribbons and several old ribbons. It took a little
experimenting to get the amount of ink and time right, but
the inker worked as advertised and we save money every

time we reink a ribbon instead of throwing it away.

I also reink ribbons for friends who have Epson printers,
but each model inker only works with certain ribbon types,
so I can't ink ribbons from other printers. It takes about 45
minutes to ink an Epson MX-80 ribbon, but it doesn't
require any attention after I fill the ink wells and turn it on.
You can also purchase blank cartridges, and colored inks
which can be mixed to match your logo or to create new
colors.

The Maclnker would be a worthwhile purchase for anyone
who uses their printer a lot, and should be a natural for
clubs or other groups who can share the inker. An
unanticipated benefit is that you can change ribbons more
frequently and give them a light reinking before the copy is
grey. This way, the printer will consistently produce high
quality copy instead of allowing it to vary from dark to light.
To me, this alone is worth the $57.95 price of the inker even
if I didn't save money. [

Books of Interest, continued

-Modify CP/M for Ditferent Peripherals. Why You're
Reading This Chapter, What Is the BIOS Anyway?,
Learning Your Way Around the BIOS, The Complete
BIOS Listing, How to Modify Your Printer Driver,
Installing the New Driver Into Your Bios, Inserting
the New Driver Into the CP/M System, A Shortcut,
Modifying BIOS for Different Control Characters.
sAppendix A Hexadecimal Notation. Why Use
Hexadecimal Notation?, Binary Notation, Decimal
Notation, Hexadecimal Notation, Converting Hex to
Decimal, Converting Decimal to Hex.

sAppendix B Utility Programs. HEXDUMP, Micro
Space Invaders, HEXIDEC, FILEDUMP.

sAppendix C Summary of 8080 Instructions. 8080
Architecture, 8080 Instructions, Assembler Directives.
sAppendix D Tables. ASCII Character Set With

Hexadecimal Equivalents, Hexadecimal to Decimal
Conversion, Multiples of 1K (1024) in Decimal and
Hexadecimal, Decimal Hex and Binary Conversion.
sAppendix E Summary of BDOS System Calls For
CP/M 2.2.

sAppendix F Summary of DDT Commands.
*Appendix G Summaries of Programe Used and
Locations of Instruction Descriptions.

No book is perfect, and The Soul of CP/M does contain a
few minor errors, such as referring to the Z-80 as “another
chip from Intel” when it is actually from Zilog. The book is
well laid out with liberal use of a second color and tint
blocks and a comprehensive index. We recommend this for
anyone who wants to learn how to use the hidden power of
their CP/M system. a

